平衡二分探索木(RBST)
説明
RBST(Randomized Binary Search Tree)は平衡二分探索木の一種。ランダムなノードを根にして期待値的に木の高さをO(logN) に抑える。
遅延評価が不要な場合は引数が 3 つのコンストラクタを呼び出す。左からノードの大きさ, 二項演算, 単位元。
計算量
O(logN)
実装例
Copy
template< class Monoid, class OperatorMonoid = Monoid >
struct RandomizedBinarySearchTree
{
using F = function< Monoid(Monoid, Monoid) >;
using G = function< Monoid(Monoid, OperatorMonoid) >;
using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;
using P = function< OperatorMonoid(OperatorMonoid, int) >;
inline int xor128()
{
static int x = 123456789;
static int y = 362436069;
static int z = 521288629;
static int w = 88675123;
int t;
t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
struct Node
{
Node *l, *r;
int cnt;
Monoid key, sum;
OperatorMonoid lazy;
Node() {}
Node(const Monoid &k, const OperatorMonoid &p) : cnt(1), key(k), sum(k), lazy(p), l(nullptr), r(nullptr) {}
};
vector< Node > pool;
int ptr;
const Monoid M1;
const OperatorMonoid OM0;
const F f;
const G g;
const H h;
const P p;
RandomizedBinarySearchTree(int sz, const F &f, const Monoid &M1) :
pool(sz), ptr(0), f(f), g(G()), h(H()), p(P()), M1(M1), OM0(OperatorMonoid()) {}
RandomizedBinarySearchTree(int sz, const F &f, const G &g, const H &h, const P &p,
const Monoid &M1, const OperatorMonoid &OM0) :
pool(sz), ptr(0), f(f), g(g), h(h), p(p), M1(M1), OM0(OM0) {}
inline Node *alloc(const Monoid &key) { return &(pool[ptr++] = Node(key, OM0)); }
virtual Node *clone(Node *t) { return t; }
inline int count(const Node *t) { return t ? t->cnt : 0; }
inline Monoid sum(const Node *t) { return t ? t->sum : M1; }
inline Node *update(Node *t)
{
t->cnt = count(t->l) + count(t->r) + 1;
t->sum = f(f(sum(t->l), sum(t->r)), t->key);
return t;
}
Node *propagete(Node *t)
{
t = clone(t);
if(t->lazy != OM0) {
t->key = g(t->key, t->lazy);
if(t->l) {
t->l = clone(t->l);
t->l->lazy = h(t->l->lazy, t->lazy);
t->l->sum = f(t->l->sum, p(t->lazy, count(t->l)));
}
if(t->r) {
t->r = clone(t->r);
t->r->lazy = h(t->r->lazy, t->lazy);
t->r->sum = f(t->r->sum, p(t->lazy, count(t->r)));
}
t->lazy = OM0;
}
return update(t);
}
Node *merge(Node *l, Node *r)
{
if(!l || !r) return l ? l : r;
if(xor128() % (l->cnt + r->cnt) < l->cnt) {
l = propagete(l);
l->r = merge(l->r, r);
return update(l);
} else {
r = propagete(r);
r->l = merge(l, r->l);
return update(r);
}
}
pair< Node *, Node * > split(Node *t, int k)
{
if(!t) return {t, t};
t = propagete(t);
if(k <= count(t->l)) {
auto s = split(t->l, k);
t->l = s.second;
return {s.first, update(t)};
} else {
auto s = split(t->r, k - count(t->l) - 1);
t->r = s.first;
return {update(t), s.second};
}
}
Node *build(int l, int r, const vector< Monoid > &v)
{
if(l + 1 >= r) return alloc(v[l]);
return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
}
Node *build(const vector< Monoid > &v)
{
ptr = 0;
return build(0, (int) v.size(), v);
}
void dump(Node *r, typename vector< Monoid >::iterator &it)
{
if(!r) return;
r = propagete(r);
dump(r->l, it);
*it = r->key;
dump(r->r, ++it);
}
vector< Monoid > dump(Node *r)
{
vector< Monoid > v((size_t) count(r));
auto it = begin(v);
dump(r, it);
return v;
}
string to_string(Node *r)
{
auto s = dump(r);
string ret;
for(int i = 0; i < s.size(); i++) ret += ", ";
return (ret);
}
void insert(Node *&t, int k, const Monoid &v)
{
auto x = split(t, k);
t = merge(merge(x.first, alloc(v)), x.second);
}
void erase(Node *&t, int k)
{
auto x = split(t, k);
t = merge(x.first, split(x.second, 1).second);
}
Monoid query(Node *&t, int a, int b)
{
auto x = split(t, a);
auto y = split(x.second, b - a);
auto ret = sum(y.first);
t = merge(x.first, merge(y.first, y.second));
return ret;
}
void set_propagate(Node *&t, int a, int b, const OperatorMonoid &p)
{
auto x = split(t, a);
auto y = split(x.second, b - a);
y.first->lazy = h(y.first->lazy, p);
t = merge(x.first, merge(propagete(y.first), y.second));
}
void set_element(Node *&t, int k, const Monoid &x)
{
t = propagete(t);
if(k < count(t->l)) set_element(t->l, k, x);
else if(k == count(t->l)) t->key = t->sum = x;
else set_element(t->r, k - count(t->l) - 1, x);
t = update(t);
}
int size(Node *t)
{
return count(t);
}
bool empty(Node *t)
{
return !t;
}
Node *makeset()
{
return (nullptr);
}
};
応用 1: multiset, set
RBSTを単に multiset や set として使うことも可能。k 番目に小さい値を O(logn) で取得できる機能を追加で持つ。
Copy
template< class T >
struct OrderedMultiSet : RandomizedBinarySearchTree< T >
{
using RBST = RandomizedBinarySearchTree< T >;
using Node = typename RBST::Node;
OrderedMultiSet(int sz) : RBST(sz, [&](T x, T y) { return x; }, T()) {}
T kth_element(Node *t, int k)
{
if(k < RBST::count(t->l)) return kth_element(t->l, k);
if(k == RBST::count(t->l)) return t->key;
return kth_element(t->r, k - RBST::count(t->l) - 1);
}
virtual void insert_key(Node *&t, const T &x)
{
RBST::insert(t, lower_bound(t, x), x);
}
void erase_key(Node *&t, const T &x)
{
if(!count(t, x)) return;
RBST::erase(t, lower_bound(t, x));
}
int count(Node *t, const T &x)
{
return upper_bound(t, x) - lower_bound(t, x);
}
int lower_bound(Node *t, const T &x)
{
if(!t) return 0;
if(x <= t->key) return lower_bound(t->l, x);
return lower_bound(t->r, x) + RBST::count(t->l) + 1;
}
int upper_bound(Node *t, const T &x)
{
if(!t) return 0;
if(x < t->key) return upper_bound(t->l, x);
return upper_bound(t->r, x) + RBST::count(t->l) + 1;
}
};
Copy
template< class T >
struct OrderedSet : OrderedMultiSet< T >
{
using SET = OrderedMultiSet< T >;
using RBST = typename SET::RBST;
using Node = typename RBST::Node;
OrderedSet(int sz) : OrderedMultiSet< T >(sz) {}
void insert_key(Node *&t, const T &x) override
{
if(SET::count(t, x)) return;
RBST::insert(t, SET::lower_bound(t, x), x);
}
};
応用 2: 完全永続
永続をします(ア。コンストラクタに与える pool の大きさに十分な余裕を持つこと。
Copy
template< class Monoid, class OperatorMonoid = Monoid >
struct PersistentRandomizedBinarySearchTree : RandomizedBinarySearchTree< Monoid, OperatorMonoid >
{
using RBST = RandomizedBinarySearchTree< Monoid, OperatorMonoid >;
using Node = typename RBST::Node;
using F = typename RBST::F;
using G = typename RBST::G;
using H = typename RBST::H;
using P = typename RBST::P;
PersistentRandomizedBinarySearchTree(int sz, const F &f, const Monoid &M1) :
RBST(sz, f, M1) {}
PersistentRandomizedBinarySearchTree(int sz, const F &f, const G &g, const H &h, const P &p,
const Monoid &M1, const OperatorMonoid &OM0) :
RBST(sz, f, g, h, p, M1, OM0) {}
Node *clone(Node *t) override { return &(RBST::pool[RBST::ptr++] = *t); }
Node *rebuild(Node *r) { return RBST::build(RBST::dump(r)); }
};
問題例
- 検証済AOJ 1508 RMQ
- 検証済(応用1)ARC 033 C データ構造
- 検証済(応用2)ARC 030 D グラフではない
- JOI2012 春合宿 コピー&ペースト