This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

#include "geometry/distance_ll.hpp"

#include "line.hpp" #include "is_intersect_ll.hpp" #include "distance_lp.hpp" namespace geometry { Real distance_ll(const Line &l, const Line &m) { return is_intersect_ll(l, m) ? 0 : distance_lp(l, m.a); } }

#line 2 "geometry/base.hpp" namespace geometry { using Real = double; const Real EPS = 1e-8; const Real PI = acos(static_cast< Real >(-1)); enum { OUT, ON, IN }; inline int sign(const Real &r) { return r <= -EPS ? -1 : r >= EPS ? 1 : 0; } inline bool equals(const Real &a, const Real &b) { return sign(a - b) == 0; } } #line 3 "geometry/point.hpp" namespace geometry { using Point = complex< Real >; istream &operator>>(istream &is, Point &p) { Real a, b; is >> a >> b; p = Point(a, b); return is; } ostream &operator<<(ostream &os, const Point &p) { return os << real(p) << " " << imag(p); } Point operator*(const Point &p, const Real &d) { return Point(real(p) * d, imag(p) * d); } // rotate point p counterclockwise by theta rad Point rotate(Real theta, const Point &p) { return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p)); } Real cross(const Point &a, const Point &b) { return real(a) * imag(b) - imag(a) * real(b); } Real dot(const Point &a, const Point &b) { return real(a) * real(b) + imag(a) * imag(b); } bool compare_x(const Point &a, const Point &b) { return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b); } bool compare_y(const Point &a, const Point &b) { return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b); } using Points = vector< Point >; } #line 3 "geometry/line.hpp" namespace geometry { struct Line { Point a, b; Line() = default; Line(const Point &a, const Point &b) : a(a), b(b) {} Line(const Real &A, const Real &B, const Real &C) { // Ax+By=C if(equals(A, 0)) { assert(!equals(B, 0)); a = Point(0, C / B); b = Point(1, C / B); } else if(equals(B, 0)) { a = Point(C / A, 0); b = Point(C / A, 1); } else { a = Point(0, C / B); b = Point(C / A, 0); } } friend ostream &operator<<(ostream &os, Line &l) { return os << l.a << " to " << l.b; } friend istream &operator>>(istream &is, Line &l) { return is >> l.a >> l.b; } }; using Lines = vector< Line >; } #line 3 "geometry/is_parallel.hpp" namespace geometry { // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A bool is_parallel(const Line &a, const Line &b) { return equals(cross(a.b - a.a, b.b - b.a), 0.0); } } #line 3 "geometry/is_intersect_ll.hpp" namespace geometry { bool is_intersect_ll(const Line &l, const Line &m) { Real A = cross(l.b - l.a, m.b - m.a); Real B = cross(l.b - l.a, l.b - m.a); if(equals(abs(A), 0) && equals(abs(B), 0)) return true; return !is_parallel(l, m); } } #line 2 "geometry/projection.hpp" #line 5 "geometry/projection.hpp" namespace geometry { // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A Point projection(const Line &l, const Point &p) { auto t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b); return l.a + (l.a - l.b) * t; } } #line 3 "geometry/distance_lp.hpp" namespace geometry { Real distance_lp(const Line &l, const Point &p) { return abs(p - projection(l, p)); } } #line 4 "geometry/distance_ll.hpp" namespace geometry { Real distance_ll(const Line &l, const Line &m) { return is_intersect_ll(l, m) ? 0 : distance_lp(l, m.a); } }