This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "geometry/distance_ll.hpp"
#include "distance_lp.hpp"
#include "is_intersect_ll.hpp"
#include "line.hpp"
namespace geometry {
Real distance_ll(const Line &l, const Line &m) {
return is_intersect_ll(l, m) ? 0 : distance_lp(l, m.a);
}
} // namespace geometry
#line 2 "geometry/base.hpp"
namespace geometry {
using Real = double;
const Real EPS = 1e-8;
const Real PI = acos(static_cast<Real>(-1));
enum { OUT, ON, IN };
inline int sign(const Real &r) { return r <= -EPS ? -1 : r >= EPS ? 1 : 0; }
inline bool equals(const Real &a, const Real &b) { return sign(a - b) == 0; }
} // namespace geometry
#line 3 "geometry/point.hpp"
namespace geometry {
using Point = complex<Real>;
istream &operator>>(istream &is, Point &p) {
Real a, b;
is >> a >> b;
p = Point(a, b);
return is;
}
ostream &operator<<(ostream &os, const Point &p) {
return os << real(p) << " " << imag(p);
}
Point operator*(const Point &p, const Real &d) {
return Point(real(p) * d, imag(p) * d);
}
// rotate point p counterclockwise by theta rad
Point rotate(Real theta, const Point &p) {
return Point(cos(theta) * real(p) - sin(theta) * imag(p),
sin(theta) * real(p) + cos(theta) * imag(p));
}
Real cross(const Point &a, const Point &b) {
return real(a) * imag(b) - imag(a) * real(b);
}
Real dot(const Point &a, const Point &b) {
return real(a) * real(b) + imag(a) * imag(b);
}
bool compare_x(const Point &a, const Point &b) {
return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b);
}
bool compare_y(const Point &a, const Point &b) {
return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b);
}
using Points = vector<Point>;
} // namespace geometry
#line 3 "geometry/line.hpp"
namespace geometry {
struct Line {
Point a, b;
Line() = default;
Line(const Point &a, const Point &b) : a(a), b(b) {}
Line(const Real &A, const Real &B, const Real &C) { // Ax+By=C
if (equals(A, 0)) {
assert(!equals(B, 0));
a = Point(0, C / B);
b = Point(1, C / B);
} else if (equals(B, 0)) {
a = Point(C / A, 0);
b = Point(C / A, 1);
} else if (equals(C, 0)) {
a = Point(0, C / B);
b = Point(1, (C - A) / B);
} else {
a = Point(0, C / B);
b = Point(C / A, 0);
}
}
friend ostream &operator<<(ostream &os, Line &l) {
return os << l.a << " to " << l.b;
}
friend istream &operator>>(istream &is, Line &l) { return is >> l.a >> l.b; }
};
using Lines = vector<Line>;
} // namespace geometry
#line 2 "geometry/projection.hpp"
#line 5 "geometry/projection.hpp"
namespace geometry {
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A
Point projection(const Line &l, const Point &p) {
auto t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
} // namespace geometry
#line 3 "geometry/distance_lp.hpp"
namespace geometry {
Real distance_lp(const Line &l, const Point &p) {
return abs(p - projection(l, p));
}
} // namespace geometry
#line 3 "geometry/is_parallel.hpp"
namespace geometry {
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
bool is_parallel(const Line &a, const Line &b) {
return equals(cross(a.b - a.a, b.b - b.a), 0.0);
}
} // namespace geometry
#line 3 "geometry/is_intersect_ll.hpp"
namespace geometry {
bool is_intersect_ll(const Line &l, const Line &m) {
Real A = cross(l.b - l.a, m.b - m.a);
Real B = cross(l.b - l.a, l.b - m.a);
if (equals(abs(A), 0) && equals(abs(B), 0)) return true;
return !is_parallel(l, m);
}
} // namespace geometry
#line 4 "geometry/distance_ll.hpp"
namespace geometry {
Real distance_ll(const Line &l, const Line &m) {
return is_intersect_ll(l, m) ? 0 : distance_lp(l, m.a);
}
} // namespace geometry