This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/flow/primal-dual.hpp"
最小費用流を最短路反復で解くアルゴリズム. 始点から終点までの重みの最短路を求め, そこに流せる限り流す. これを流したい分だけ流しきるまで繰り返す. 最短路の計算は, ポテンシャル $h$ を用いて負辺がないように変換して Dijkstra法 で求める.
PrimalDual(V)
: 頂点数 $v$ で初期化する.add_edge(from, to, cap, cost)
: 頂点 from
から to
に容量 cap
、コスト cost
の有向辺を張る.min_cost_flow(s, t, f)
: 頂点 s
から t
に流量 f
の最小費用流を流し, そのコストを返す. 流せないとき $-1$ を返す.output()
: 最小費用流を復元して出力する.$F$: 流量, $V$: 頂点数, $E$: 辺の本数
/**
* @brief Primal Dual(最小費用流)
*
*/
template <typename flow_t, typename cost_t>
struct PrimalDual {
struct edge {
int to;
flow_t cap;
cost_t cost;
int rev;
bool isrev;
};
vector<vector<edge> > graph;
vector<cost_t> potential, min_cost;
vector<int> prevv, preve;
const cost_t INF;
PrimalDual(int V) : graph(V), INF(numeric_limits<cost_t>::max()) {}
void add_edge(int from, int to, flow_t cap, cost_t cost) {
graph[from].emplace_back(
(edge){to, cap, cost, (int)graph[to].size(), false});
graph[to].emplace_back(
(edge){from, 0, -cost, (int)graph[from].size() - 1, true});
}
cost_t min_cost_flow(int s, int t, flow_t f) {
int V = (int)graph.size();
cost_t ret = 0;
using Pi = pair<cost_t, int>;
priority_queue<Pi, vector<Pi>, greater<Pi> > que;
potential.assign(V, 0);
preve.assign(V, -1);
prevv.assign(V, -1);
while (f > 0) {
min_cost.assign(V, INF);
que.emplace(0, s);
min_cost[s] = 0;
while (!que.empty()) {
Pi p = que.top();
que.pop();
if (min_cost[p.second] < p.first) continue;
for (int i = 0; i < (int)graph[p.second].size(); i++) {
edge &e = graph[p.second][i];
cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] -
potential[e.to];
if (e.cap > 0 && min_cost[e.to] > nextCost) {
min_cost[e.to] = nextCost;
prevv[e.to] = p.second, preve[e.to] = i;
que.emplace(min_cost[e.to], e.to);
}
}
}
if (min_cost[t] == INF) return -1;
for (int v = 0; v < V; v++) potential[v] += min_cost[v];
flow_t addflow = f;
for (int v = t; v != s; v = prevv[v]) {
addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
}
f -= addflow;
ret += addflow * potential[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = graph[prevv[v]][preve[v]];
e.cap -= addflow;
graph[v][e.rev].cap += addflow;
}
}
return ret;
}
void output() {
for (int i = 0; i < graph.size(); i++) {
for (auto &e : graph[i]) {
if (e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/"
<< rev_e.cap + e.cap << ")" << endl;
}
}
}
};
#line 1 "graph/flow/primal-dual.hpp"
/**
* @brief Primal Dual(最小費用流)
*
*/
template <typename flow_t, typename cost_t>
struct PrimalDual {
struct edge {
int to;
flow_t cap;
cost_t cost;
int rev;
bool isrev;
};
vector<vector<edge> > graph;
vector<cost_t> potential, min_cost;
vector<int> prevv, preve;
const cost_t INF;
PrimalDual(int V) : graph(V), INF(numeric_limits<cost_t>::max()) {}
void add_edge(int from, int to, flow_t cap, cost_t cost) {
graph[from].emplace_back(
(edge){to, cap, cost, (int)graph[to].size(), false});
graph[to].emplace_back(
(edge){from, 0, -cost, (int)graph[from].size() - 1, true});
}
cost_t min_cost_flow(int s, int t, flow_t f) {
int V = (int)graph.size();
cost_t ret = 0;
using Pi = pair<cost_t, int>;
priority_queue<Pi, vector<Pi>, greater<Pi> > que;
potential.assign(V, 0);
preve.assign(V, -1);
prevv.assign(V, -1);
while (f > 0) {
min_cost.assign(V, INF);
que.emplace(0, s);
min_cost[s] = 0;
while (!que.empty()) {
Pi p = que.top();
que.pop();
if (min_cost[p.second] < p.first) continue;
for (int i = 0; i < (int)graph[p.second].size(); i++) {
edge &e = graph[p.second][i];
cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] -
potential[e.to];
if (e.cap > 0 && min_cost[e.to] > nextCost) {
min_cost[e.to] = nextCost;
prevv[e.to] = p.second, preve[e.to] = i;
que.emplace(min_cost[e.to], e.to);
}
}
}
if (min_cost[t] == INF) return -1;
for (int v = 0; v < V; v++) potential[v] += min_cost[v];
flow_t addflow = f;
for (int v = t; v != s; v = prevv[v]) {
addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
}
f -= addflow;
ret += addflow * potential[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = graph[prevv[v]][preve[v]];
e.cap -= addflow;
graph[v][e.rev].cap += addflow;
}
}
return ret;
}
void output() {
for (int i = 0; i < graph.size(); i++) {
for (auto &e : graph[i]) {
if (e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/"
<< rev_e.cap + e.cap << ")" << endl;
}
}
}
};