Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:heavy_check_mark: Offline Dag Reachability(DAGの到達可能性クエリ)
(graph/others/offline-dag-reachability.hpp)

概要

DAG(閉路のない有向グラフ) が与えられたとき, ある頂点からある頂点に到達できるかどうかを調べるクエリをビット並列により処理する. ちなみに, 閉路のあるグラフの場合は強連結成分分解して, 各強連結成分を縮約することで DAG に帰着される.

トポロジカルソートして頂点をトポロジカル順に見ると, ある頂点からどの頂点に到達できるかを判定できる. このとき, 各 bit を $1$ つのクエリに対応させて到達可能性を判定すると, ビット並列により処理できることとなり高速化が見込める.

使い方

計算量

$O(\frac {(E + V) Q} {B})$

$V$: 頂点数, $E$: 辺の本数, $Q$ クエリの個数, $B$: ワードサイズ

Depends on

Verified with

Code

#pragma once

#include "../graph-template.hpp"
#include "topological-sort.hpp"

/**
 * @brief Offline Dag Reachability(DAGの到達可能性クエリ)
 * @docs docs/offline-dag-reachability.md
 */

template< typename T >
vector< int > offline_dag_reachability(const Graph< T > &g, vector< pair< int, int > > &qs) {
  const int N = (int) g.size();
  const int Q = (int) qs.size();
  auto ord = topological_sort(g);
  vector< int > ans(Q);
  for(int l = 0; l < Q; l += 64) {
    int r = min(Q, l + 64);
    vector< int64_t > dp(N);
    for(int k = l; k < r; k++) {
      dp[qs[k].first] |= int64_t(1) << (k - l);
    }
    for(auto &idx : ord) {
      for(auto &to : g[idx]) dp[to] |= dp[idx];
    }
    for(int k = l; k < r; k++) {
      ans[k] = (dp[qs[k].second] >> (k - l)) & 1;
    }
  }
  return ans;
}
#line 2 "graph/others/offline-dag-reachability.hpp"

#line 2 "graph/graph-template.hpp"

/**
 * @brief Graph Template(グラフテンプレート)
 */
template< typename T = int >
struct Edge {
  int from, to;
  T cost;
  int idx;

  Edge() = default;

  Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}

  operator int() const { return to; }
};

template< typename T = int >
struct Graph {
  vector< vector< Edge< T > > > g;
  int es;

  Graph() = default;

  explicit Graph(int n) : g(n), es(0) {}

  size_t size() const {
    return g.size();
  }

  void add_directed_edge(int from, int to, T cost = 1) {
    g[from].emplace_back(from, to, cost, es++);
  }

  void add_edge(int from, int to, T cost = 1) {
    g[from].emplace_back(from, to, cost, es);
    g[to].emplace_back(to, from, cost, es++);
  }

  void read(int M, int padding = -1, bool weighted = false, bool directed = false) {
    for(int i = 0; i < M; i++) {
      int a, b;
      cin >> a >> b;
      a += padding;
      b += padding;
      T c = T(1);
      if(weighted) cin >> c;
      if(directed) add_directed_edge(a, b, c);
      else add_edge(a, b, c);
    }
  }

  inline vector< Edge< T > > &operator[](const int &k) {
    return g[k];
  }

  inline const vector< Edge< T > > &operator[](const int &k) const {
    return g[k];
  }
};

template< typename T = int >
using Edges = vector< Edge< T > >;
#line 2 "graph/others/topological-sort.hpp"

#line 4 "graph/others/topological-sort.hpp"

/**
 * @brief Topological Sort(トポロジカルソート)
 * @docs docs/topological-sort.md
 */
template< typename T >
vector< int > topological_sort(const Graph< T > &g) {
  const int N = (int) g.size();
  vector< int > deg(N);
  for(int i = 0; i < N; i++) {
    for(auto &to : g[i]) ++deg[to];
  }
  stack< int > st;
  for(int i = 0; i < N; i++) {
    if(deg[i] == 0) st.emplace(i);
  }
  vector< int > ord;
  while(!st.empty()) {
    auto p = st.top();
    st.pop();
    ord.emplace_back(p);
    for(auto &to : g[p]) {
      if(--deg[to] == 0) st.emplace(to);
    }
  }
  return ord;
}
#line 5 "graph/others/offline-dag-reachability.hpp"

/**
 * @brief Offline Dag Reachability(DAGの到達可能性クエリ)
 * @docs docs/offline-dag-reachability.md
 */

template< typename T >
vector< int > offline_dag_reachability(const Graph< T > &g, vector< pair< int, int > > &qs) {
  const int N = (int) g.size();
  const int Q = (int) qs.size();
  auto ord = topological_sort(g);
  vector< int > ans(Q);
  for(int l = 0; l < Q; l += 64) {
    int r = min(Q, l + 64);
    vector< int64_t > dp(N);
    for(int k = l; k < r; k++) {
      dp[qs[k].first] |= int64_t(1) << (k - l);
    }
    for(auto &idx : ord) {
      for(auto &to : g[idx]) dp[to] |= dp[idx];
    }
    for(int k = l; k < r; k++) {
      ans[k] = (dp[qs[k].second] >> (k - l)) & 1;
    }
  }
  return ans;
}
Back to top page