This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/tree/static-top-tree-dp.hpp"
vertex(int u) -> Path
: 頂点 $u$ のみからなる path cluster を生成するadd_vertex(Point d, int v) -> Path
: point cluster $d$ の根に頂点 $v$ を代入して path cluster にするadd_edge(Path d, int e) -> Point
: Path cluster $d$ に、辺 $e$ を追加して virtual な根を生やし、point cluster にするrake(Point l, Point r) -> Point
: point cluster $l, r$ をマージするcompress(Path p, Path c, int e) -> Path
: path cluster $p, c$ ($p$ が根に近い側にある) に、辺 $e$ を使ってマージする#include "static-top-tree.hpp"
template <typename TreeDPInfo, typename G>
struct StaticTopTreeDP {
using Path = typename TreeDPInfo::Path;
using Point = typename TreeDPInfo::Point;
using STT = StaticTopTree<G>;
const STT &g;
const TreeDPInfo &info;
explicit StaticTopTreeDP(const STT &g, const TreeDPInfo &info)
: g(g), info(info) {
dp.resize(g.size());
dfs(g.root);
}
Path update_vertex(int u) {
while (u != -1) {
modify(u);
u = g[u].p;
}
return get<Path>(dp[g.root]);
}
Path update_edge(int e) { return update_vertex(g.edge_to_vs[e]); }
private:
vector<variant<Point, Path> > dp;
void modify(int k) {
switch (g[k].op) {
case STT::Vertex:
dp[k] = info.vertex(k);
return;
case STT::Compress:
dp[k] = info.compress(get<Path>(dp[g[k].l]), get<Path>(dp[g[k].r]),
g[k].e_id);
return;
case STT::Rake:
dp[k] = info.rake(get<Point>(dp[g[k].l]), get<Point>(dp[g[k].r]));
return;
case STT::AddEdge:
dp[k] = info.add_edge(get<Path>(dp[g[k].l]), g[k].e_id);
return;
case STT::AddVertex:
dp[k] = info.add_vertex(get<Point>(dp[g[k].l]), k);
return;
}
}
void dfs(int u) {
if (u == -1) return;
dfs(g[u].l);
dfs(g[u].r);
modify(u);
}
};
/*
struct TreeDPInfo {
struct Point {};
struct Path {};
vector< int > A;
TreeDPInfo(int n): A(n) {}
Path vertex(int u) const {};
Path add_vertex(Point d, int u) const {}
Point add_edge(Path d, int e) const {}
Point rake(Point l, Point r) const {}
Path compress(Path p, Path c, int e) const {}
};
*/
#line 1 "graph/tree/static-top-tree.hpp"
template <typename G>
struct StaticTopTree {
enum OpType { Vertex, AddVertex, AddEdge, Rake, Compress };
struct Node {
OpType op;
int l, r, p;
int e_id;
Node(OpType op, int l, int r) : op{op}, l{l}, r{r}, p{-1}, e_id{-1} {}
};
vector<Node> vs;
vector<int> edge_to_vs;
int root;
explicit StaticTopTree(G &g, int r = 0) : g(g), edge_to_vs(g.size() - 1) {
int e_sz = 0;
for (int i = 0; i < g.size(); i++) e_sz += g[i].size();
if (e_sz + 1 != g.size()) {
throw std::runtime_error("`g` must be a directed tree.");
}
dfs(r);
vs.assign(g.size(), {Vertex, -1, -1});
vs.reserve(g.size() * 4);
root = compress(r).first;
vs.shrink_to_fit();
}
const Node &operator[](int k) const { return vs[k]; }
size_t size() const { return vs.size(); }
private:
G &g;
using P = pair<int, int>;
int dfs(int u) {
int size = 1, heavy = 0;
for (auto &v : g[u]) {
int subtree_size = dfs(v);
size += subtree_size;
if (heavy < subtree_size) {
heavy = subtree_size;
swap(v, g[u][0]);
}
}
return size;
}
int make_node(OpType t, int l, int r, int k = -1) {
if (k == -1) {
k = (int)vs.size();
vs.emplace_back(t, l, r);
} else {
vs[k] = {t, l, r};
}
if (l != -1) vs[l].p = k;
if (r != -1) vs[r].p = k;
return k;
}
P merge_forRake(const vector<P> &a) {
if (a.size() == 1) return a[0];
int size_sum = 0;
for (auto &[_, size] : a) {
size_sum += size;
}
vector<P> b, c;
for (auto &[it, size] : a) {
(size_sum > size ? b : c).emplace_back(it, size);
size_sum -= size * 2;
}
auto [l, l_size] = merge_forRake(b);
auto [r, r_size] = merge_forRake(c);
return {make_node(Rake, l, r), l_size + r_size};
}
P merge_forCompress(const vector<pair<P, int>> &a) {
if (a.size() == 1) return a[0].first;
int size_sum = 0;
for (auto &[it, _] : a) {
size_sum += it.second;
}
vector<pair<P, int>> b, c;
for (auto &[it, _] : a) {
(size_sum > it.second ? b : c).emplace_back(it, _);
size_sum -= it.second * 2;
}
auto [l, l_size] = merge_forCompress(b);
auto [r, r_size] = merge_forCompress(c);
int idx = make_node(Compress, l, r);
edge_to_vs[c[0].second] = idx;
vs[idx].e_id = c[0].second;
return {idx, l_size + r_size};
}
P add_edge(int u, int e_idx) {
auto [it, size] = compress(u);
int idx = make_node(AddEdge, it, -1);
edge_to_vs[e_idx] = idx;
vs[idx].e_id = e_idx;
return {idx, size};
}
P rake(int u) {
vector<P> chs;
for (int j = 1; j < (int)g[u].size(); j++) {
chs.emplace_back(add_edge(g[u][j].to, g[u][j].idx));
}
return merge_forRake(chs);
}
P add_vertex(int u) {
if (g[u].size() < 2) {
return {make_node(OpType::Vertex, -1, -1, u), 1};
} else {
auto [it, size] = rake(u);
return {make_node(OpType::AddVertex, it, -1, u), size + 1};
}
}
P compress(int u) {
vector<pair<P, int>> chs{{add_vertex(u), -1}};
vector<int> ids{-1};
while (not g[u].empty()) {
int e_idx = g[u][0].idx;
u = g[u][0];
chs.emplace_back(add_vertex(u), e_idx);
}
return merge_forCompress(chs);
}
};
#line 2 "graph/tree/static-top-tree-dp.hpp"
template <typename TreeDPInfo, typename G>
struct StaticTopTreeDP {
using Path = typename TreeDPInfo::Path;
using Point = typename TreeDPInfo::Point;
using STT = StaticTopTree<G>;
const STT &g;
const TreeDPInfo &info;
explicit StaticTopTreeDP(const STT &g, const TreeDPInfo &info)
: g(g), info(info) {
dp.resize(g.size());
dfs(g.root);
}
Path update_vertex(int u) {
while (u != -1) {
modify(u);
u = g[u].p;
}
return get<Path>(dp[g.root]);
}
Path update_edge(int e) { return update_vertex(g.edge_to_vs[e]); }
private:
vector<variant<Point, Path> > dp;
void modify(int k) {
switch (g[k].op) {
case STT::Vertex:
dp[k] = info.vertex(k);
return;
case STT::Compress:
dp[k] = info.compress(get<Path>(dp[g[k].l]), get<Path>(dp[g[k].r]),
g[k].e_id);
return;
case STT::Rake:
dp[k] = info.rake(get<Point>(dp[g[k].l]), get<Point>(dp[g[k].r]));
return;
case STT::AddEdge:
dp[k] = info.add_edge(get<Path>(dp[g[k].l]), g[k].e_id);
return;
case STT::AddVertex:
dp[k] = info.add_vertex(get<Point>(dp[g[k].l]), k);
return;
}
}
void dfs(int u) {
if (u == -1) return;
dfs(g[u].l);
dfs(g[u].r);
modify(u);
}
};
/*
struct TreeDPInfo {
struct Point {};
struct Path {};
vector< int > A;
TreeDPInfo(int n): A(n) {}
Path vertex(int u) const {};
Path add_vertex(Point d, int u) const {}
Point add_edge(Path d, int e) const {}
Point rake(Point l, Point r) const {}
Path compress(Path p, Path c, int e) const {}
};
*/