Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:heavy_check_mark: math/combinatorics/arbitrary-mod-int.hpp

Verified with

Code

struct ArbitraryModInt {

  int x;

  ArbitraryModInt() : x(0) {}

  ArbitraryModInt(int64_t y) : x(y >= 0 ? y % get_mod() : (get_mod() - (-y) % get_mod()) % get_mod()) {}

  static int &get_mod() {
    static int mod = 0;
    return mod;
  }

  static void set_mod(int md) {
    get_mod() = md;
  }

  ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
    if((x += p.x) >= get_mod()) x -= get_mod();
    return *this;
  }

  ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
    if((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
    return *this;
  }

  ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
    unsigned long long a = (unsigned long long) x * p.x;
    unsigned xh = (unsigned) (a >> 32), xl = (unsigned) a, d, m;
    asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (get_mod()));
    x = m;
    return *this;
  }

  ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ArbitraryModInt operator-() const { return ArbitraryModInt(-x); }

  ArbitraryModInt operator+(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) += p; }

  ArbitraryModInt operator-(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) -= p; }

  ArbitraryModInt operator*(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) *= p; }

  ArbitraryModInt operator/(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) /= p; }

  bool operator==(const ArbitraryModInt &p) const { return x == p.x; }

  bool operator!=(const ArbitraryModInt &p) const { return x != p.x; }

  ArbitraryModInt inverse() const {
    int a = x, b = get_mod(), u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ArbitraryModInt(u);
  }

  ArbitraryModInt pow(int64_t n) const {
    ArbitraryModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ArbitraryModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ArbitraryModInt &a) {
    int64_t t;
    is >> t;
    a = ArbitraryModInt(t);
    return (is);
  }
};
#line 1 "math/combinatorics/arbitrary-mod-int.hpp"
struct ArbitraryModInt {

  int x;

  ArbitraryModInt() : x(0) {}

  ArbitraryModInt(int64_t y) : x(y >= 0 ? y % get_mod() : (get_mod() - (-y) % get_mod()) % get_mod()) {}

  static int &get_mod() {
    static int mod = 0;
    return mod;
  }

  static void set_mod(int md) {
    get_mod() = md;
  }

  ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
    if((x += p.x) >= get_mod()) x -= get_mod();
    return *this;
  }

  ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
    if((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
    return *this;
  }

  ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
    unsigned long long a = (unsigned long long) x * p.x;
    unsigned xh = (unsigned) (a >> 32), xl = (unsigned) a, d, m;
    asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (get_mod()));
    x = m;
    return *this;
  }

  ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ArbitraryModInt operator-() const { return ArbitraryModInt(-x); }

  ArbitraryModInt operator+(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) += p; }

  ArbitraryModInt operator-(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) -= p; }

  ArbitraryModInt operator*(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) *= p; }

  ArbitraryModInt operator/(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) /= p; }

  bool operator==(const ArbitraryModInt &p) const { return x == p.x; }

  bool operator!=(const ArbitraryModInt &p) const { return x != p.x; }

  ArbitraryModInt inverse() const {
    int a = x, b = get_mod(), u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ArbitraryModInt(u);
  }

  ArbitraryModInt pow(int64_t n) const {
    ArbitraryModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ArbitraryModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ArbitraryModInt &a) {
    int64_t t;
    is >> t;
    a = ArbitraryModInt(t);
    return (is);
  }
};
Back to top page