Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:heavy_check_mark: Dynamic Point Add Rectangle Sum
(other/dynamic-point-add-rectangle-sum.hpp)

Depends on

Verified with

Code

#include "static-point-add-rectangle-sum.hpp"

/**
 * @brief Dynamic Point Add Rectangle Sum
 */
template< typename T, typename C >
struct DynamicPointAddRectangleSum {
  using StaticRectangleSumSolver = StaticPointAddRectangleSum< T, C >;

  static_assert(is_integral< T >::value, "template parameter T must be integral type");

  struct Point {
    T x, y;
    C w;
  };

  struct Query {
    T l, d, r, u;
  };

  vector< variant< Point, Query > > queries;

  DynamicPointAddRectangleSum() = default;

  DynamicPointAddRectangleSum(int q) {
    queries.reserve(q);
  }

  void add_point(T x, T y, C w) {
    queries.emplace_back(Point{x, y, w});
  }

  // tatal weight of [l, r) * [d, u) points
  void add_query(T l, T d, T r, T u) {
    queries.emplace_back(Query{l, d, r, u});
  }

  vector< C > calculate_queries() {
    int q = (int) queries.size();
    vector< int > rev(q);
    int sz = 0;
    for(int i = 0; i < q; i++) {
      if(holds_alternative< Query >(queries[i])) {
        rev[i] = sz++;
      }
    }
    vector< C > ans(sz);
    queue< pair< int, int > > range;
    range.emplace(0, q);
    while(not range.empty()) {
      auto[l, r] = range.front();
      range.pop();
      int m = (l + r) >> 1;
      StaticRectangleSumSolver solver;
      for(int k = l; k < m; k++) {
        if(holds_alternative< Point >(queries[k])) {
          auto &point = get< Point >(queries[k]);
          solver.add_point(point.x, point.y, point.w);
        }
      }
      for(int k = m; k < r; k++) {
        if(holds_alternative< Query >(queries[k])) {
          auto &query = get< Query >(queries[k]);
          solver.add_query(query.l, query.d, query.r, query.u);
        }
      }
      auto sub = solver.calculate_queries();
      for(int k = m, t = 0; k < r; k++) {
        if(holds_alternative< Query >(queries[k])) {
          ans[rev[k]] += sub[t++];
        }
      }
      if(l + 1 < m) range.emplace(l, m);
      if(m + 1 < r) range.emplace(m, r);
    }
    return ans;
  }
};
#line 1 "structure/others/binary-indexed-tree.hpp"
/**
 * @brief Binary-Indexed-Tree(BIT)
 * @docs docs/binary-indexed-tree.md
 */
template< typename T >
struct BinaryIndexedTree {
private:
  int n;
  vector< T > data;

public:
  BinaryIndexedTree() = default;

  explicit BinaryIndexedTree(int n) : n(n) {
    data.assign(n + 1, T());
  }

  explicit BinaryIndexedTree(const vector< T > &v) :
      BinaryIndexedTree((int) v.size()) {
    build(v);
  }

  void build(const vector< T > &v) {
    assert(n == (int) v.size());
    for(int i = 1; i <= n; i++) data[i] = v[i - 1];
    for(int i = 1; i <= n; i++) {
      int j = i + (i & -i);
      if(j <= n) data[j] += data[i];
    }
  }

  void apply(int k, const T &x) {
    for(++k; k <= n; k += k & -k) data[k] += x;
  }

  T prod(int r) const {
    T ret = T();
    for(; r > 0; r -= r & -r) ret += data[r];
    return ret;
  }

  T prod(int l, int r) const {
    return prod(r) - prod(l);
  }

  int lower_bound(T x) const {
    int i = 0;
    for(int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
      if(i + k <= n && data[i + k] < x) {
        x -= data[i + k];
        i += k;
      }
    }
    return i;
  }

  int upper_bound(T x) const {
    int i = 0;
    for(int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
      if(i + k <= n && data[i + k] <= x) {
        x -= data[i + k];
        i += k;
      }
    }
    return i;
  }
};
#line 2 "other/static-point-add-rectangle-sum.hpp"

/**
 * @brief Static Point Add Rectangle Sum
 */
template< typename T, typename C >
struct StaticPointAddRectangleSum {
  using BIT = BinaryIndexedTree< C >;

  static_assert(is_integral< T >::value, "template parameter T must be integral type");

  struct Point {
    T x, y;
    C w;
  };

  struct Query {
    T l, d, r, u;
  };

  vector< Point > points;
  vector< Query > queries;

  StaticPointAddRectangleSum() = default;

  StaticPointAddRectangleSum(int n, int q) {
    points.reserve(n);
    queries.reserve(q);
  }

  void add_point(T x, T y, C w) {
    points.emplace_back(Point{x, y, w});
  }

  // tatal weight of [l, r) * [d, u) points
  void add_query(T l, T d, T r, T u) {
    queries.emplace_back(Query{l, d, r, u});
  }

  vector< C > calculate_queries() {
    int n = (int) points.size();
    int q = (int) queries.size();
    vector< C > ans(q);
    if(points.empty() or queries.empty()) {
      return ans;
    }
    sort(points.begin(), points.end(), [](const Point &a, const Point &b) {
      return a.y < b.y;
    });
    vector< T > ys;
    ys.reserve(n);
    for(Point &p: points) {
      if(ys.empty() or ys.back() != p.y) ys.emplace_back(p.y);
      p.y = (int) ys.size() - 1;
    }
    ys.shrink_to_fit();

    struct Q {
      T x;
      int d, u;
      bool type;
      int idx;
    };
    vector< Q > qs;
    qs.reserve(q + q);
    for(int i = 0; i < q; i++) {
      auto &query = queries[i];
      int d = lower_bound(ys.begin(), ys.end(), query.d) - ys.begin();
      int u = lower_bound(ys.begin(), ys.end(), query.u) - ys.begin();
      qs.emplace_back(Q{query.l, d, u, false, i});
      qs.emplace_back(Q{query.r, d, u, true, i});
    }
    sort(points.begin(), points.end(), [](const Point &a, const Point &b) {
      return a.x < b.x;
    });
    sort(qs.begin(), qs.end(), [](const Q &a, const Q &b) {
      return a.x < b.x;
    });
    int j = 0;
    BIT bit(ys.size());
    for(auto &query: qs) {
      while(j < n and points[j].x < query.x) {
        bit.apply(points[j].y, points[j].w);
        ++j;
      }
      if(query.type) ans[query.idx] += bit.prod(query.d, query.u);
      else ans[query.idx] -= bit.prod(query.d, query.u);
    }
    return ans;
  }
};
#line 2 "other/dynamic-point-add-rectangle-sum.hpp"

/**
 * @brief Dynamic Point Add Rectangle Sum
 */
template< typename T, typename C >
struct DynamicPointAddRectangleSum {
  using StaticRectangleSumSolver = StaticPointAddRectangleSum< T, C >;

  static_assert(is_integral< T >::value, "template parameter T must be integral type");

  struct Point {
    T x, y;
    C w;
  };

  struct Query {
    T l, d, r, u;
  };

  vector< variant< Point, Query > > queries;

  DynamicPointAddRectangleSum() = default;

  DynamicPointAddRectangleSum(int q) {
    queries.reserve(q);
  }

  void add_point(T x, T y, C w) {
    queries.emplace_back(Point{x, y, w});
  }

  // tatal weight of [l, r) * [d, u) points
  void add_query(T l, T d, T r, T u) {
    queries.emplace_back(Query{l, d, r, u});
  }

  vector< C > calculate_queries() {
    int q = (int) queries.size();
    vector< int > rev(q);
    int sz = 0;
    for(int i = 0; i < q; i++) {
      if(holds_alternative< Query >(queries[i])) {
        rev[i] = sz++;
      }
    }
    vector< C > ans(sz);
    queue< pair< int, int > > range;
    range.emplace(0, q);
    while(not range.empty()) {
      auto[l, r] = range.front();
      range.pop();
      int m = (l + r) >> 1;
      StaticRectangleSumSolver solver;
      for(int k = l; k < m; k++) {
        if(holds_alternative< Point >(queries[k])) {
          auto &point = get< Point >(queries[k]);
          solver.add_point(point.x, point.y, point.w);
        }
      }
      for(int k = m; k < r; k++) {
        if(holds_alternative< Query >(queries[k])) {
          auto &query = get< Query >(queries[k]);
          solver.add_query(query.l, query.d, query.r, query.u);
        }
      }
      auto sub = solver.calculate_queries();
      for(int k = m, t = 0; k < r; k++) {
        if(holds_alternative< Query >(queries[k])) {
          ans[rev[k]] += sub[t++];
        }
      }
      if(l + 1 < m) range.emplace(l, m);
      if(m + 1 < r) range.emplace(m, r);
    }
    return ans;
  }
};
Back to top page