This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "structure/class/point-add-rectangle-sum.hpp"
#include "../others/binary-indexed-tree.hpp"
template <typename T>
struct PointAddRectangleSum {
using S = T;
using D = BinaryIndexedTree<T>;
static constexpr S op(const S& a, const S& b) { return a + b; }
static constexpr S e() { return 0; }
static constexpr D init(int n) { return D{n}; }
static constexpr void apply(D& d, int k, const S& v) { d.apply(k, v); }
static constexpr S prod(D& d, int l, int r) { return d.prod(l, r); }
};
#line 1 "structure/others/binary-indexed-tree.hpp"
template <typename T>
struct BinaryIndexedTree {
private:
int n;
vector<T> data;
public:
BinaryIndexedTree() = default;
explicit BinaryIndexedTree(int n) : n(n) { data.assign(n + 1, T()); }
explicit BinaryIndexedTree(const vector<T> &v)
: BinaryIndexedTree((int)v.size()) {
build(v);
}
void build(const vector<T> &v) {
assert(n == (int)v.size());
for (int i = 1; i <= n; i++) data[i] = v[i - 1];
for (int i = 1; i <= n; i++) {
int j = i + (i & -i);
if (j <= n) data[j] += data[i];
}
}
void apply(int k, const T &x) {
for (++k; k <= n; k += k & -k) data[k] += x;
}
T prod(int r) const {
T ret = T();
for (; r > 0; r -= r & -r) ret += data[r];
return ret;
}
T prod(int l, int r) const { return prod(r) - prod(l); }
int lower_bound(T x) const {
int i = 0;
for (int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
if (i + k <= n && data[i + k] < x) {
x -= data[i + k];
i += k;
}
}
return i;
}
int upper_bound(T x) const {
int i = 0;
for (int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
if (i + k <= n && data[i + k] <= x) {
x -= data[i + k];
i += k;
}
}
return i;
}
};
#line 2 "structure/class/point-add-rectangle-sum.hpp"
template <typename T>
struct PointAddRectangleSum {
using S = T;
using D = BinaryIndexedTree<T>;
static constexpr S op(const S& a, const S& b) { return a + b; }
static constexpr S e() { return 0; }
static constexpr D init(int n) { return D{n}; }
static constexpr void apply(D& d, int k, const S& v) { d.apply(k, v); }
static constexpr S prod(D& d, int l, int r) { return d.prod(l, r); }
};