This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "structure/dynamic-tree/diameter.hpp"
#include "top-tree.hpp"
// verified: https://www.spoj.com/problems/QTREE4/
template <typename T>
struct Diameter {
static constexpr T m_inf = numeric_limits<T>::min();
struct Point {
T dia, dep1, dep2;
};
struct Path {
T dia, all, pref_max, suf_max;
};
struct Info {
bool is_vertex;
T w;
};
static Path vertex(const Info& u) { return add_vertex({m_inf, m_inf}, u); }
static Path add_vertex(const Point& d, const Info& u) {
Path p;
p.dia = d.dia;
p.pref_max = m_inf;
p.all = u.w;
if (d.dep1 != m_inf) {
p.pref_max = d.dep1 + u.w;
if (d.dep2 != m_inf) {
p.dia = max(p.dia, d.dep1 + u.w + d.dep2);
}
}
if (u.is_vertex) {
p.pref_max = max(p.pref_max, u.w);
p.dia = max(p.dia, p.pref_max);
}
p.suf_max = p.pref_max;
return p;
}
static Point add_edge(const Path& d) { return {d.dia, d.pref_max, m_inf}; }
static Point rake(Point l, const Point& r) {
l.dia = max(l.dia, r.dia);
if (l.dep1 < r.dep1) {
l.dep2 = max(l.dep1, r.dep2);
l.dep1 = r.dep1;
} else {
l.dep2 = max(l.dep2, r.dep1);
}
return l;
}
static Path compress(const Path& p, const Path& c) {
Path t;
t.dia = max(p.dia, c.dia);
if (p.suf_max != m_inf and c.pref_max != m_inf) {
t.dia = max(t.dia, p.suf_max + c.pref_max);
}
t.all = p.all + c.all;
t.pref_max = p.pref_max;
t.suf_max = c.suf_max;
if (c.pref_max != m_inf) {
t.pref_max = max(t.pref_max, p.all + c.pref_max);
}
if (p.suf_max != m_inf) {
t.suf_max = max(t.suf_max, c.all + p.suf_max);
}
return t;
}
};
#line 1 "structure/dynamic-tree/top-tree.hpp"
template <typename TreeDPInfo>
struct SplayTreeForDashedEdge {
using Point = typename TreeDPInfo::Point;
struct Node {
Node *l, *r, *p;
Point key, sum;
explicit Node(const Point &key)
: key(key), sum(key), l(nullptr), r(nullptr), p(nullptr) {}
};
SplayTreeForDashedEdge() = default;
using NP = Node *;
void rotr(NP t) const {
NP x = t->p, y = x->p;
if ((x->l = t->r)) t->r->p = x;
t->r = x, x->p = t;
update(x), update(t);
if ((t->p = y)) {
if (y->l == x) y->l = t;
if (y->r == x) y->r = t;
}
}
void rotl(NP t) const {
NP x = t->p, y = x->p;
if ((x->r = t->l)) t->l->p = x;
t->l = x, x->p = t;
update(x), update(t);
if ((t->p = y)) {
if (y->l == x) y->l = t;
if (y->r == x) y->r = t;
}
}
void update(NP t) const {
t->sum = t->key;
if (t->l) t->sum = TreeDPInfo::rake(t->sum, t->l->sum);
if (t->r) t->sum = TreeDPInfo::rake(t->sum, t->r->sum);
}
NP get_right(NP t) const {
while (t->r) t = t->r;
return t;
}
NP alloc(const Point &v) const {
auto t = new Node(v);
update(t);
return t;
}
void splay(NP t) const {
while (t->p) {
NP q = t->p;
if (!q->p) {
if (q->l == t)
rotr(t);
else
rotl(t);
} else {
NP r = q->p;
if (r->l == q) {
if (q->l == t)
rotr(q), rotr(t);
else
rotl(t), rotr(t);
} else {
if (q->r == t)
rotl(q), rotl(t);
else
rotr(t), rotl(t);
}
}
}
}
NP insert(NP t, const Point &v) const {
if (not t) {
t = alloc(v);
return t;
} else {
NP cur = get_right(t), z = alloc(v);
splay(cur);
z->p = cur;
cur->r = z;
update(cur);
splay(z);
return z;
}
}
NP erase(NP t) const {
splay(t);
NP x = t->l, y = t->r;
delete t;
if (not x) {
t = y;
if (t) t->p = nullptr;
} else if (not y) {
t = x;
t->p = nullptr;
} else {
x->p = nullptr;
t = get_right(x);
splay(t);
t->r = y;
y->p = t;
update(t);
}
return t;
}
};
template <typename TreeDPInfo>
struct TopTree {
using Path = typename TreeDPInfo::Path;
using Info = typename TreeDPInfo::Info;
private:
struct Node {
Node *l, *r, *p;
Info info;
Path sum, mus;
typename SplayTreeForDashedEdge<TreeDPInfo>::Node *light, *belong;
bool rev;
bool is_root() const { return not p or (p->l != this and p->r != this); }
Node(const Info &info)
: info(info),
l(nullptr),
r(nullptr),
p(nullptr),
rev(false),
light(nullptr),
belong(nullptr) {}
};
public:
using NP = Node *;
const SplayTreeForDashedEdge<TreeDPInfo> splay_tree;
private:
void toggle(NP t) {
swap(t->l, t->r);
swap(t->sum, t->mus);
t->rev ^= true;
}
void rotr(NP t) {
NP x = t->p, y = x->p;
push(x), push(t);
if ((x->l = t->r)) t->r->p = x;
t->r = x, x->p = t;
update(x), update(t);
if ((t->p = y)) {
if (y->l == x) y->l = t;
if (y->r == x) y->r = t;
}
}
void rotl(NP t) {
NP x = t->p, y = x->p;
push(x), push(t);
if ((x->r = t->l)) t->l->p = x;
t->l = x, x->p = t;
update(x), update(t);
if ((t->p = y)) {
if (y->l == x) y->l = t;
if (y->r == x) y->r = t;
}
}
public:
TopTree() : splay_tree{} {}
void push(NP t) {
if (t->rev) {
if (t->l) toggle(t->l);
if (t->r) toggle(t->r);
t->rev = false;
}
}
void push_rev(NP t) {
if (t->rev) {
if (t->l) toggle(t->l);
if (t->r) toggle(t->r);
t->rev = false;
}
}
void update(NP t) {
Path key = t->light ? TreeDPInfo::add_vertex(t->light->sum, t->info)
: TreeDPInfo::vertex(t->info);
t->sum = key;
t->mus = key;
if (t->l) {
t->sum = TreeDPInfo::compress(t->l->sum, t->sum);
t->mus = TreeDPInfo::compress(t->mus, t->l->mus);
}
if (t->r) {
t->sum = TreeDPInfo::compress(t->sum, t->r->sum);
t->mus = TreeDPInfo::compress(t->r->mus, t->mus);
}
}
void splay(NP t) {
push(t);
{
NP rot = t;
while (not rot->is_root()) rot = rot->p;
t->belong = rot->belong;
if (t != rot) rot->belong = nullptr;
}
while (not t->is_root()) {
NP q = t->p;
if (q->is_root()) {
push_rev(q), push_rev(t);
if (q->l == t)
rotr(t);
else
rotl(t);
} else {
NP r = q->p;
push_rev(r), push_rev(q), push_rev(t);
if (r->l == q) {
if (q->l == t)
rotr(q), rotr(t);
else
rotl(t), rotr(t);
} else {
if (q->r == t)
rotl(q), rotl(t);
else
rotr(t), rotl(t);
}
}
}
}
NP expose(NP t) {
NP rp = nullptr;
for (NP cur = t; cur; cur = cur->p) {
splay(cur);
if (cur->r) {
cur->light =
splay_tree.insert(cur->light, TreeDPInfo::add_edge(cur->r->sum));
cur->r->belong = cur->light;
}
cur->r = rp;
if (cur->r) {
push(cur->r);
cur->light = splay_tree.erase(cur->r->belong);
}
update(cur);
rp = cur;
}
splay(t);
return rp;
}
void link(NP child, NP parent) {
if (is_connected(child, parent)) {
throw runtime_error(
"child and parent must be different connected components");
}
if (child->l) {
throw runtime_error("child must be root");
}
child->p = parent;
parent->r = child;
update(parent);
}
void cut(NP child) {
expose(child);
NP parent = child->l;
if (not parent) {
throw runtime_error("child must not be root");
}
child->l = nullptr;
parent->p = nullptr;
update(child);
}
void evert(NP t) {
expose(t);
toggle(t);
push(t);
}
NP alloc(const Info &v) {
NP t = new Node(v);
update(t);
return t;
}
bool is_connected(NP u, NP v) {
expose(u), expose(v);
return u == v or u->p;
}
vector<NP> build(vector<Info> &vs) {
vector<NP> nodes(vs.size());
for (int i = 0; i < (int)vs.size(); i++) {
nodes[i] = alloc(vs[i]);
}
return nodes;
}
NP lca(NP u, NP v) {
if (not is_connected(u, v)) return nullptr;
expose(u);
return expose(v);
}
void set_key(NP t, const Info &v) {
expose(t);
t->info = std::move(v);
update(t);
}
const Path &query(NP u) {
evert(u);
return u->sum;
}
const Path &query_path(NP u) {
expose(u);
return u->sum;
}
const Path &query_path(NP u, NP v) {
evert(u);
return query_path(v);
}
Path query_subtree(NP u) {
expose(u);
NP l = u->l;
u->l = nullptr;
update(u);
auto ret = u->sum;
u->l = l;
update(u);
return ret;
}
Path query_subtree(NP r, NP u) {
evert(r);
return query_subtree(u);
}
};
/*
struct TreeDPInfo {
struct Point {};
struct Path {};
struct Info {};
static Path vertex(const Info& u) {}
static Path add_vertex(const Point& d, const Info& u) {}
static Point add_edge(const Path& d) {}
static Point rake(const Point& l, const Point& r) {}
static Path compress(const Path& p, const Path& c) {}
};
*/
#line 2 "structure/dynamic-tree/diameter.hpp"
// verified: https://www.spoj.com/problems/QTREE4/
template <typename T>
struct Diameter {
static constexpr T m_inf = numeric_limits<T>::min();
struct Point {
T dia, dep1, dep2;
};
struct Path {
T dia, all, pref_max, suf_max;
};
struct Info {
bool is_vertex;
T w;
};
static Path vertex(const Info& u) { return add_vertex({m_inf, m_inf}, u); }
static Path add_vertex(const Point& d, const Info& u) {
Path p;
p.dia = d.dia;
p.pref_max = m_inf;
p.all = u.w;
if (d.dep1 != m_inf) {
p.pref_max = d.dep1 + u.w;
if (d.dep2 != m_inf) {
p.dia = max(p.dia, d.dep1 + u.w + d.dep2);
}
}
if (u.is_vertex) {
p.pref_max = max(p.pref_max, u.w);
p.dia = max(p.dia, p.pref_max);
}
p.suf_max = p.pref_max;
return p;
}
static Point add_edge(const Path& d) { return {d.dia, d.pref_max, m_inf}; }
static Point rake(Point l, const Point& r) {
l.dia = max(l.dia, r.dia);
if (l.dep1 < r.dep1) {
l.dep2 = max(l.dep1, r.dep2);
l.dep1 = r.dep1;
} else {
l.dep2 = max(l.dep2, r.dep1);
}
return l;
}
static Path compress(const Path& p, const Path& c) {
Path t;
t.dia = max(p.dia, c.dia);
if (p.suf_max != m_inf and c.pref_max != m_inf) {
t.dia = max(t.dia, p.suf_max + c.pref_max);
}
t.all = p.all + c.all;
t.pref_max = p.pref_max;
t.suf_max = c.suf_max;
if (c.pref_max != m_inf) {
t.pref_max = max(t.pref_max, p.all + c.pref_max);
}
if (p.suf_max != m_inf) {
t.suf_max = max(t.suf_max, c.all + p.suf_max);
}
return t;
}
};