Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:heavy_check_mark: test/verify/aoj-2450-4.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2450

#include "../../template/template.hpp"

#include "../../structure/develop/super-link-cut-tree.hpp"

using T = int64_t;

// 遅延伝搬をする作用素
struct Lazy {
  int v;

  // 単位元
  Lazy() : v{inf} {}

  // 初期化
  Lazy(int v) : v{v} {}

  void propagate(const Lazy &p) {
    if(p.v != inf) v = p.v;
  }
};

// Light-edge の情報
template< typename Lazy >
struct LInfo {

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  LInfo() {}

  // 初期化
  LInfo(T v) {}

  // l, r は Splay-tree の子 (原理上、各ノード区別はない)
  void update(const LInfo &l, const LInfo &r) {}

  // 部分木への遅延伝搬
  void propagate(const Lazy &p) {}
};

// Heavy-edge の情報
template< typename LInfo, typename Lazy >
struct Info {
  T v;

  T dp, dp_p, dp_c, all;
  int sz;


  // 単位元(キーの値はアクセスしないので未初期化でもよい
  Info() : dp{-infll}, dp_p{-infll}, dp_c{-infll}, all{0}, sz{0} {}

  // 初期化
  Info(T v) : v{v} {}

  // 反転
  void toggle() { swap(dp_p, dp_c); }

  // pが親, cがheavy-edgeで結ばれた子, lがそれ以外の子
  void update(const Info &p, const Info &c, const LInfo &l) {
    all = p.all + v + c.all;
    sz = p.sz + 1 + c.sz;

    dp = max({p.dp, c.dp, max< T >(0, p.dp_c) + v + max< T >(0, c.dp_p)});
    dp_p = max(p.dp_p, p.all + v + max< T >(0, c.dp_p));
    dp_c = max(c.dp_c, c.all + v + max< T >(0, p.dp_c));
  }

  // 親と light-edge で繋げる
  LInfo link() const { return LInfo(); }

  // 遅延伝搬
  void propagate(const Lazy &p) {
    if(p.v != inf) {
      v = p.v;
      all = v * sz;
      dp = dp_c = dp_p = max(v, all);
    }
  }

  // light-edgeに対する遅延伝搬
  // 基本的にはpropagateのみ実装すれば十分
  // pathとsubtreeの遅延伝搬が両方ある場合を除く
  void propagate_light(const Lazy &p) {}
};

using LCT = SuperLinkCutTree< Info, LInfo, Lazy >;


int main() {
  int N, Q;
  cin >> N >> Q;
  LCT lct;
  vector< LCT::NP > vs(N);
  for(int i = 0; i < N; i++) {
    T x;
    cin >> x;
    vs[i] = lct.alloc(x);
  }
  for(int i = 1; i < N; i++) {
    int a, b;
    cin >> a >> b;
    --a, --b;
    lct.evert(vs[a]);
    lct.link(vs[a], vs[b]);
  }
  while(Q--) {
    int t, a, b, c;
    cin >> t >> a >> b >> c;
    --a, --b;
    if(t == 2) {
      cout << lct.query_path(vs[a], vs[b]).dp << "\n";
    } else {
      lct.set_propagate_path(vs[a], vs[b], c);
    }
  }
}
#line 1 "test/verify/aoj-2450-4.test.cpp"
// competitive-verifier: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2450

#line 1 "template/template.hpp"
#include <bits/stdc++.h>

using namespace std;

using int64 = long long;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
  os << p.first << " " << p.second;
  return os;
}

template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  for (int i = 0; i < (int)v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (T &in : v) is >> in;
  return is;
}

template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
  return a < b && (a = b, true);
}

template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
  return a > b && (a = b, true);
}

template <typename T = int64>
vector<T> make_v(size_t a) {
  return vector<T>(a);
}

template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
  return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}

template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
  t = v;
}

template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
  for (auto &e : t) fill_v(e, v);
}

template <typename F>
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward<F>(f)) {}

  template <typename... Args>
  decltype(auto) operator()(Args &&...args) const {
    return F::operator()(*this, forward<Args>(args)...);
  }
};

template <typename F>
inline decltype(auto) MFP(F &&f) {
  return FixPoint<F>{forward<F>(f)};
}
#line 4 "test/verify/aoj-2450-4.test.cpp"

#line 1 "structure/develop/super-link-cut-tree.hpp"
/**
 * @brief 何でもできるLCT
 */
template <typename LInfo, typename Lazy>
struct SplayTree {
  struct Node {
    Node *l, *r, *p;
    LInfo info;
    Lazy lazy, lbuf;

    explicit Node(const LInfo &info)
        : info(info),
          l(nullptr),
          r(nullptr),
          p(nullptr),
          lazy(Lazy()),
          lbuf(Lazy()) {}
  };

  const LInfo e;

  SplayTree() : e(LInfo()) {}

  using NP = Node *;

  void rotr(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if ((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }

  void rotl(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if ((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }

  const LInfo &get_info(NP t) { return t ? t->info : e; }

  void update(NP t) { t->info.update(get_info(t->l), get_info(t->r)); }

  NP get_right(NP t) {
    while (t->r) t = t->r;
    return t;
  }

  NP alloc(const LInfo &v) {
    auto t = new Node(v);
    update(t);
    return t;
  }

  void propagate(NP t, const Lazy &lazy) {
    t->info.propagate(lazy);
    t->lbuf.propagate(lazy);
    t->lazy.propagate(lazy);
  }

  void push(NP t) {
    if (t->l) propagate(t->l, t->lazy);
    if (t->r) propagate(t->r, t->lazy);
    t->lazy = Lazy();
  }

  void splay(NP t) {
    push(t);
    while (t->p) {
      NP q = t->p;
      if (!q->p) {
        if (q->l == t)
          rotr(t);
        else
          rotl(t);
      } else {
        NP r = q->p;
        if (r->l == q) {
          if (q->l == t)
            rotr(q), rotr(t);
          else
            rotl(t), rotr(t);
        } else {
          if (q->r == t)
            rotl(q), rotl(t);
          else
            rotr(t), rotl(t);
        }
      }
    }
  }

  NP insert(NP t, const LInfo &v) {
    if (not t) {
      t = alloc(v);
      return t;
    } else {
      NP cur = get_right(t), z = alloc(v);
      splay(cur);
      z->p = cur;
      cur->r = z;
      update(cur);
      splay(z);
      return z;
    }
  }

  NP erase(NP t) {
    splay(t);
    NP x = t->l, y = t->r;
    delete t;
    if (not x) {
      t = y;
      if (t) t->p = nullptr;
    } else if (not y) {
      t = x;
      t->p = nullptr;
    } else {
      x->p = nullptr;
      t = get_right(x);
      splay(t);
      t->r = y;
      y->p = t;
      update(t);
    }
    return t;
  }
};

template <template <typename, typename> typename _Info,
          template <typename> typename _LInfo, typename Lazy>
struct SuperLinkCutTree {
  using LInfo = _LInfo<Lazy>;
  using Info = _Info<LInfo, Lazy>;

 private:
  struct Node {
    Node *l, *r, *p;
    Info info;
    typename SplayTree<LInfo, Lazy>::Node *light, *belong;
    bool rev;
    Lazy hlazy, llazy;

    bool is_root() const { return not p or (p->l != this and p->r != this); }

    explicit Node(const Info &info)
        : info(info),
          l(nullptr),
          r(nullptr),
          p(nullptr),
          rev(false),
          light(nullptr),
          belong(nullptr),
          hlazy(Lazy()),
          llazy(Lazy()) {}
  };

 public:
  using NP = Node *;
  SplayTree<LInfo, Lazy> splay_tree;

 private:
  const Info e;

 private:
  void toggle(NP t) {
    swap(t->l, t->r);
    t->info.toggle();
    t->rev ^= true;
  }

  void rotr(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if ((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }

  void rotl(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if ((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }

  void propagate_heavy(NP t, const Lazy &hlazy) {
    t->hlazy.propagate(hlazy);
    t->info.propagate(hlazy);
  }

  void propagate_light(NP t, const Lazy &llazy) {
    t->llazy.propagate(llazy);
    t->info.propagate_light(llazy);
  }

  void propagate_all(NP t, const Lazy &lazy) {
    propagate_heavy(t, lazy);
    propagate_light(t, lazy);
  }

 public:
  SuperLinkCutTree() : e{Info()}, splay_tree{} {}

  void push(NP t) {
    if (t->rev) {
      if (t->l) toggle(t->l);
      if (t->r) toggle(t->r);
      t->rev = false;
    }
    {
      if (t->l) {
        propagate_heavy(t->l, t->hlazy);
        propagate_light(t->l, t->llazy);
      }
      if (t->r) {
        propagate_heavy(t->r, t->hlazy);
        propagate_light(t->r, t->llazy);
      }
      if (t->light) {
        splay_tree.propagate(t->light, t->llazy);
      }
      t->hlazy = Lazy();
      t->llazy = Lazy();
    }
  }

  void push_rev(NP t) {
    if (t->rev) {
      if (t->l) toggle(t->l);
      if (t->r) toggle(t->r);
      t->rev = false;
    }
  }

  const Info &get_info(NP t) { return t ? t->info : e; }

  void update(NP t) {
    t->info.update(get_info(t->l), get_info(t->r),
                   splay_tree.get_info(t->light));
  }

  void splay(NP t) {
    push(t);
    {
      NP rot = t;
      while (not rot->is_root()) rot = rot->p;
      t->belong = rot->belong;
      if (t != rot) rot->belong = nullptr;
    }
    while (not t->is_root()) {
      NP q = t->p;
      if (q->is_root()) {
        push_rev(q), push_rev(t);
        if (q->l == t)
          rotr(t);
        else
          rotl(t);
      } else {
        NP r = q->p;
        push_rev(r), push_rev(q), push_rev(t);
        if (r->l == q) {
          if (q->l == t)
            rotr(q), rotr(t);
          else
            rotl(t), rotr(t);
        } else {
          if (q->r == t)
            rotl(q), rotl(t);
          else
            rotr(t), rotl(t);
        }
      }
    }
  }

  NP expose(NP t) {
    NP rp = nullptr;
    for (NP cur = t; cur; cur = cur->p) {
      splay(cur);
      if (cur->r) {
        cur->light = splay_tree.insert(cur->light, cur->r->info.link());
        cur->r->belong = cur->light;
      }
      cur->r = rp;
      if (cur->r) {
        splay_tree.splay(cur->r->belong);
        propagate_all(cur->r, cur->r->belong->lbuf);
        push(cur->r);
        cur->light = splay_tree.erase(cur->r->belong);
      }
      update(cur);
      rp = cur;
    }
    splay(t);
    return rp;
  }

  void link(NP child, NP parent) {
    expose(parent);
    expose(child);
    child->p = parent;
    parent->r = child;
    update(parent);
  }

  void cut(NP child) {
    expose(child);
    NP parent = child->l;
    child->l = nullptr;
    parent->p = nullptr;
    update(child);
  }

  void evert(NP t) {
    expose(t);
    toggle(t);
    push(t);
  }

  NP alloc(const Info &info) {
    NP t = new Node(info);
    update(t);
    return t;
  }

  bool is_connected(NP u, NP v) {
    expose(u), expose(v);
    return u == v or u->p;
  }

  vector<NP> build(vector<Info> &vs) {
    vector<NP> nodes(vs.size());
    for (int i = 0; i < (int)vs.size(); i++) {
      nodes[i] = alloc(vs[i]);
    }
    return nodes;
  }

  NP lca(NP u, NP v) {
    if (not is_connected(u, v)) return nullptr;
    expose(u);
    return expose(v);
  }

  void set_key(NP t, const Info &v) {
    expose(t);
    t->info = move(v);
    update(t);
  }

  void set_propagate_path(NP t, const Lazy &lazy) {
    expose(t);
    propagate_heavy(t, lazy);
    push(t);
    update(t);
  }

  void set_propagate_path(NP u, NP v, const Lazy &lazy) {
    evert(u);
    set_propagate_path(v, lazy);
  }

  void set_propagate_all(NP t, const Lazy &lazy) {
    expose(t);
    propagate_all(t, lazy);
    push(t);
    update(t);
  }

  void set_propagate_subtree(NP t, const Lazy &lazy) {
    expose(t);
    NP l = t->l;
    t->l = nullptr;
    propagate_all(t, lazy);
    push(t);
    t->l = l;
    update(t);
  }

  const Info &query(NP u) {
    expose(u);
    return get_info(u);
  }

  const Info &query_path(NP u, NP v) {
    evert(u);
    expose(v);
    return get_info(v);
  }

  Info query_subtree(NP u) {
    expose(u);
    NP l = u->l;
    u->l = nullptr;
    update(u);
    auto ret = u->info;
    u->l = l;
    update(u);
    return ret;
  }
};

/*
using T = int64_t;
// 遅延伝搬をするための作用素
struct Lazy {

  // 単位元
  Lazy() {}

  // 初期化
  Lazy(T v) {}

  // 遅延伝搬
  void propagate(const Lazy &p) {}
};

// Light-edge の情報
template< typename Lazy >
struct LInfo {

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  LInfo() {}

  // 初期化
  LInfo(T v) {}

  // l, r は Splay-tree の子 (原理上、各ノード区別はない)
  void update(const LInfo &l, const LInfo &r) {}

  // 部分木への遅延伝搬
  void propagate(const Lazy &p) {}
};

// Heavy-edge の情報
template< typename LInfo, typename Lazy >
struct Info {

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  Info() {}

  // 初期化
  Info(T v) {}

  // 反転
  void toggle() {}

  // pが親, cがheavy-edgeで結ばれた子, lがそれ以外の子
  void update(const Info &p, const Info &c, const LInfo &l) {}

  // 親と light-edge で繋げる
  LInfo link() const { return LInfo(); }

  // 遅延伝搬
  void propagate(const Lazy &p) {}

  // light-edgeに対する遅延伝搬
  // pathとsubtreeの遅延伝搬が両方ある場合に実装する
  void propagate_light(const Lazy &p) {}
};

using LCT = SuperLinkCutTree< Info, LInfo, Lazy >;
*/
#line 6 "test/verify/aoj-2450-4.test.cpp"

using T = int64_t;

// 遅延伝搬をする作用素
struct Lazy {
  int v;

  // 単位元
  Lazy() : v{inf} {}

  // 初期化
  Lazy(int v) : v{v} {}

  void propagate(const Lazy &p) {
    if(p.v != inf) v = p.v;
  }
};

// Light-edge の情報
template< typename Lazy >
struct LInfo {

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  LInfo() {}

  // 初期化
  LInfo(T v) {}

  // l, r は Splay-tree の子 (原理上、各ノード区別はない)
  void update(const LInfo &l, const LInfo &r) {}

  // 部分木への遅延伝搬
  void propagate(const Lazy &p) {}
};

// Heavy-edge の情報
template< typename LInfo, typename Lazy >
struct Info {
  T v;

  T dp, dp_p, dp_c, all;
  int sz;


  // 単位元(キーの値はアクセスしないので未初期化でもよい
  Info() : dp{-infll}, dp_p{-infll}, dp_c{-infll}, all{0}, sz{0} {}

  // 初期化
  Info(T v) : v{v} {}

  // 反転
  void toggle() { swap(dp_p, dp_c); }

  // pが親, cがheavy-edgeで結ばれた子, lがそれ以外の子
  void update(const Info &p, const Info &c, const LInfo &l) {
    all = p.all + v + c.all;
    sz = p.sz + 1 + c.sz;

    dp = max({p.dp, c.dp, max< T >(0, p.dp_c) + v + max< T >(0, c.dp_p)});
    dp_p = max(p.dp_p, p.all + v + max< T >(0, c.dp_p));
    dp_c = max(c.dp_c, c.all + v + max< T >(0, p.dp_c));
  }

  // 親と light-edge で繋げる
  LInfo link() const { return LInfo(); }

  // 遅延伝搬
  void propagate(const Lazy &p) {
    if(p.v != inf) {
      v = p.v;
      all = v * sz;
      dp = dp_c = dp_p = max(v, all);
    }
  }

  // light-edgeに対する遅延伝搬
  // 基本的にはpropagateのみ実装すれば十分
  // pathとsubtreeの遅延伝搬が両方ある場合を除く
  void propagate_light(const Lazy &p) {}
};

using LCT = SuperLinkCutTree< Info, LInfo, Lazy >;


int main() {
  int N, Q;
  cin >> N >> Q;
  LCT lct;
  vector< LCT::NP > vs(N);
  for(int i = 0; i < N; i++) {
    T x;
    cin >> x;
    vs[i] = lct.alloc(x);
  }
  for(int i = 1; i < N; i++) {
    int a, b;
    cin >> a >> b;
    --a, --b;
    lct.evert(vs[a]);
    lct.link(vs[a], vs[b]);
  }
  while(Q--) {
    int t, a, b, c;
    cin >> t >> a >> b >> c;
    --a, --b;
    if(t == 2) {
      cout << lct.query_path(vs[a], vs[b]).dp << "\n";
    } else {
      lct.set_propagate_path(vs[a], vs[b], c);
    }
  }
}

Test cases

Env Name Status Elapsed Memory
g++ testcase_00 :heavy_check_mark: AC 6 ms 4 MB
g++ testcase_01 :heavy_check_mark: AC 6 ms 4 MB
g++ testcase_02 :heavy_check_mark: AC 6 ms 4 MB
g++ testcase_03 :heavy_check_mark: AC 6 ms 4 MB
g++ testcase_04 :heavy_check_mark: AC 7 ms 4 MB
g++ testcase_05 :heavy_check_mark: AC 203 ms 6 MB
g++ testcase_06 :heavy_check_mark: AC 302 ms 16 MB
g++ testcase_07 :heavy_check_mark: AC 502 ms 29 MB
g++ testcase_08 :heavy_check_mark: AC 7 ms 4 MB
g++ testcase_09 :heavy_check_mark: AC 27 ms 4 MB
g++ testcase_10 :heavy_check_mark: AC 268 ms 36 MB
g++ testcase_11 :heavy_check_mark: AC 7 ms 4 MB
g++ testcase_12 :heavy_check_mark: AC 6 ms 4 MB
g++ testcase_13 :heavy_check_mark: AC 7 ms 4 MB
g++ testcase_14 :heavy_check_mark: AC 9 ms 4 MB
g++ testcase_15 :heavy_check_mark: AC 33 ms 4 MB
g++ testcase_16 :heavy_check_mark: AC 176 ms 5 MB
g++ testcase_17 :heavy_check_mark: AC 296 ms 10 MB
g++ testcase_18 :heavy_check_mark: AC 355 ms 18 MB
g++ testcase_19 :heavy_check_mark: AC 531 ms 32 MB
g++ testcase_20 :heavy_check_mark: AC 7 ms 4 MB
g++ testcase_21 :heavy_check_mark: AC 7 ms 4 MB
g++ testcase_22 :heavy_check_mark: AC 15 ms 4 MB
g++ testcase_23 :heavy_check_mark: AC 126 ms 5 MB
g++ testcase_24 :heavy_check_mark: AC 308 ms 13 MB
g++ testcase_25 :heavy_check_mark: AC 533 ms 33 MB
g++ testcase_26 :heavy_check_mark: AC 7 ms 4 MB
g++ testcase_27 :heavy_check_mark: AC 246 ms 6 MB
g++ testcase_28 :heavy_check_mark: AC 385 ms 18 MB
g++ testcase_29 :heavy_check_mark: AC 522 ms 32 MB
g++ testcase_30 :heavy_check_mark: AC 7 ms 4 MB
g++ testcase_31 :heavy_check_mark: AC 9 ms 4 MB
g++ testcase_32 :heavy_check_mark: AC 39 ms 4 MB
g++ testcase_33 :heavy_check_mark: AC 177 ms 8 MB
g++ testcase_34 :heavy_check_mark: AC 251 ms 16 MB
g++ testcase_35 :heavy_check_mark: AC 337 ms 28 MB
g++ testcase_36 :heavy_check_mark: AC 387 ms 29 MB
g++ testcase_37 :heavy_check_mark: AC 366 ms 29 MB
g++ testcase_38 :heavy_check_mark: AC 367 ms 29 MB
clang++ testcase_00 :heavy_check_mark: AC 6 ms 4 MB
clang++ testcase_01 :heavy_check_mark: AC 6 ms 4 MB
clang++ testcase_02 :heavy_check_mark: AC 6 ms 4 MB
clang++ testcase_03 :heavy_check_mark: AC 6 ms 4 MB
clang++ testcase_04 :heavy_check_mark: AC 7 ms 4 MB
clang++ testcase_05 :heavy_check_mark: AC 207 ms 6 MB
clang++ testcase_06 :heavy_check_mark: AC 352 ms 16 MB
clang++ testcase_07 :heavy_check_mark: AC 536 ms 29 MB
clang++ testcase_08 :heavy_check_mark: AC 7 ms 4 MB
clang++ testcase_09 :heavy_check_mark: AC 30 ms 4 MB
clang++ testcase_10 :heavy_check_mark: AC 274 ms 36 MB
clang++ testcase_11 :heavy_check_mark: AC 7 ms 4 MB
clang++ testcase_12 :heavy_check_mark: AC 6 ms 4 MB
clang++ testcase_13 :heavy_check_mark: AC 7 ms 4 MB
clang++ testcase_14 :heavy_check_mark: AC 9 ms 4 MB
clang++ testcase_15 :heavy_check_mark: AC 33 ms 4 MB
clang++ testcase_16 :heavy_check_mark: AC 182 ms 5 MB
clang++ testcase_17 :heavy_check_mark: AC 297 ms 10 MB
clang++ testcase_18 :heavy_check_mark: AC 390 ms 18 MB
clang++ testcase_19 :heavy_check_mark: AC 535 ms 32 MB
clang++ testcase_20 :heavy_check_mark: AC 7 ms 4 MB
clang++ testcase_21 :heavy_check_mark: AC 7 ms 4 MB
clang++ testcase_22 :heavy_check_mark: AC 15 ms 4 MB
clang++ testcase_23 :heavy_check_mark: AC 133 ms 5 MB
clang++ testcase_24 :heavy_check_mark: AC 322 ms 13 MB
clang++ testcase_25 :heavy_check_mark: AC 577 ms 33 MB
clang++ testcase_26 :heavy_check_mark: AC 7 ms 4 MB
clang++ testcase_27 :heavy_check_mark: AC 246 ms 6 MB
clang++ testcase_28 :heavy_check_mark: AC 398 ms 18 MB
clang++ testcase_29 :heavy_check_mark: AC 537 ms 32 MB
clang++ testcase_30 :heavy_check_mark: AC 7 ms 4 MB
clang++ testcase_31 :heavy_check_mark: AC 9 ms 4 MB
clang++ testcase_32 :heavy_check_mark: AC 40 ms 4 MB
clang++ testcase_33 :heavy_check_mark: AC 181 ms 8 MB
clang++ testcase_34 :heavy_check_mark: AC 244 ms 16 MB
clang++ testcase_35 :heavy_check_mark: AC 377 ms 28 MB
clang++ testcase_36 :heavy_check_mark: AC 392 ms 29 MB
clang++ testcase_37 :heavy_check_mark: AC 405 ms 29 MB
clang++ testcase_38 :heavy_check_mark: AC 371 ms 29 MB
Back to top page