Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:heavy_check_mark: test/verify/aoj-cgl-4-b.test.cpp

Depends on

Code

#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B"
#define ERROR 0.00000001

#include "../../template/template.hpp"

#include "../../geometry/convex_polygon_diameter.hpp"

using namespace geometry;

int main() {
  int N;
  cin >> N;
  Polygon p(N);
  for(int i = 0; i < N; i++) {
    cin >> p[i];
  }
  auto ret = convex_polygon_diameter(p);
  cout << abs(p[ret.first] - p[ret.second]) << "\n";
}
#line 1 "test/verify/aoj-cgl-4-b.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B"
#define ERROR 0.00000001

#line 1 "template/template.hpp"
#include<bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = 1e9 + 7;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};
 
template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}
#line 5 "test/verify/aoj-cgl-4-b.test.cpp"

#line 2 "geometry/base.hpp"

namespace geometry {
  using Real = double;
  const Real EPS = 1e-8;
  const Real PI = acos(static_cast< Real >(-1));

  enum {
    OUT, ON, IN
  };

  inline int sign(const Real &r) {
    return r <= -EPS ? -1 : r >= EPS ? 1 : 0;
  }

  inline bool equals(const Real &a, const Real &b) {
    return sign(a - b) == 0;
  }
}
#line 3 "geometry/point.hpp"

namespace geometry {
  using Point = complex< Real >;

  istream &operator>>(istream &is, Point &p) {
    Real a, b;
    is >> a >> b;
    p = Point(a, b);
    return is;
  }

  ostream &operator<<(ostream &os, const Point &p) {
    return os << real(p) << " " << imag(p);
  }

  Point operator*(const Point &p, const Real &d) {
    return Point(real(p) * d, imag(p) * d);
  }

  // rotate point p counterclockwise by theta rad
  Point rotate(Real theta, const Point &p) {
    return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p));
  }

  Real cross(const Point &a, const Point &b) {
    return real(a) * imag(b) - imag(a) * real(b);
  }

  Real dot(const Point &a, const Point &b) {
    return real(a) * real(b) + imag(a) * imag(b);
  }

  bool compare_x(const Point &a, const Point &b) {
    return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b);
  }

  bool compare_y(const Point &a, const Point &b) {
    return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b);
  }

  using Points = vector< Point >;
}
#line 2 "geometry/polygon.hpp"

#line 4 "geometry/polygon.hpp"

namespace geometry {
  using Polygon = vector< Point >;
  using Polygons = vector< Polygon >;
}
#line 3 "geometry/convex_polygon_diameter.hpp"

namespace geometry {
  // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B
  pair< int, int > convex_polygon_diameter(const Polygon &p) {
    int N = (int) p.size();
    int is = 0, js = 0;
    for(int i = 1; i < N; i++) {
      if(imag(p[i]) > imag(p[is])) is = i;
      if(imag(p[i]) < imag(p[js])) js = i;
    }
    Real maxdis = norm(p[is] - p[js]);

    int maxi, maxj, i, j;
    i = maxi = is;
    j = maxj = js;
    do {
      if(cross(p[(i + 1) % N] - p[i], p[(j + 1) % N] - p[j]) >= 0) {
        j = (j + 1) % N;
      } else {
        i = (i + 1) % N;
      }
      if(norm(p[i] - p[j]) > maxdis) {
        maxdis = norm(p[i] - p[j]);
        maxi = i;
        maxj = j;
      }
    } while(i != is || j != js);
    return minmax(maxi, maxj);
  }
}
#line 7 "test/verify/aoj-cgl-4-b.test.cpp"

using namespace geometry;

int main() {
  int N;
  cin >> N;
  Polygon p(N);
  for(int i = 0; i < N; i++) {
    cin >> p[i];
  }
  auto ret = convex_polygon_diameter(p);
  cout << abs(p[ret.first] - p[ret.second]) << "\n";
}
Back to top page