Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:warning: test/verify/dmoj-ds5.hpp

Depends on

Code

// competitive-verifier: IGNORE
// competitive-verifier: PROBLEM https://dmoj.ca/problem/ds5

#include "../../other/printer.hpp"
#include "../../other/scanner.hpp"
#include "../../structure/develop/dynamic-tree-test.hpp"
#include "../../template/template.hpp"

int main() {
  Scanner in(stdin);
  Printer out(stdout);

  int N, M;
  in.read(N, M);
  vector<vector<int> > g(N);
  for (int i = 0; i + 1 < N; i++) {
    int x, y;
    in.read(x, y);
    --x, --y;
    g[x].emplace_back(y);
    g[y].emplace_back(x);
  }
  LCT lct;
  vector<LCT::NP> vs(N);
  for (int i = 0; i < N; i++) {
    T x;
    in.read(x);
    vs[i] = lct.alloc(x);
  }
  int R;
  in.read(R);
  --R;
  MFP([&](auto dfs, int idx, int par) -> void {
    for (auto &to : g[idx]) {
      if (to != par) {
        lct.link(vs[to], vs[idx]);
        dfs(to, idx);
      }
    }
  })
  (R, -1);

  for (int i = 0; i < M; i++) {
    int k;
    in.read(k);
    if (k == 0) {
      int x, y;
      in.read(x, y);
      --x;
      lct.evert(vs[R]);
      lct.set_propagate_subtree(vs[x], {1, y});
    } else if (k == 1) {
      in.read(R);
      --R;
    } else if (k == 2) {
      int x, y;
      T z;
      in.read(x, y, z);
      --x, --y;
      lct.set_propagate_path(vs[x], vs[y], {1, z});
    } else if (k == 3) {
      int x;
      in.read(x);
      --x;
      lct.evert(vs[R]);
      auto ret = lct.query_subtree(vs[x]);
      out.writeln(min(ret.light_min, ret.path_min));
    } else if (k == 4) {
      int x;
      in.read(x);
      --x;
      lct.evert(vs[R]);
      auto ret = lct.query_subtree(vs[x]);
      out.writeln(max(ret.light_max, ret.path_max));
    } else if (k == 5) {
      int x, y;
      in.read(x, y);
      --x;
      lct.evert(vs[R]);
      lct.set_propagate_subtree(vs[x], {2, y});
    } else if (k == 6) {
      int x, y;
      T z;
      in.read(x, y, z);
      --x, --y;
      lct.set_propagate_path(vs[x], vs[y], {2, z});
    } else if (k == 7) {
      int x, y;
      in.read(x, y);
      --x, --y;
      out.writeln(lct.query_path(vs[x], vs[y]).path_min);
    } else if (k == 8) {
      int x, y;
      in.read(x, y);
      --x, --y;
      out.writeln(lct.query_path(vs[x], vs[y]).path_max);
    } else if (k == 9) {
      int x, y;
      in.read(x, y);
      --x, --y;
      lct.evert(vs[R]);
      if (lct.lca(vs[x], vs[y]) == vs[x]) {
        continue;
      }
      lct.cut(vs[x]);
      lct.link(vs[x], vs[y]);
    } else if (k == 10) {
      int x, y;
      in.read(x, y);
      --x, --y;
      out.writeln(lct.query_path(vs[x], vs[y]).path_sum);
    } else {
      int x;
      in.read(x);
      --x;
      lct.evert(vs[R]);
      auto ret = lct.query_subtree(vs[x]);
      out.writeln(ret.path_sum + ret.light_sum);
    }
  }
}
#line 1 "test/verify/dmoj-ds5.hpp"
// competitive-verifier: IGNORE
// competitive-verifier: PROBLEM https://dmoj.ca/problem/ds5

#line 1 "other/printer.hpp"
/**
 * @brief Printer(高速出力)
 */
struct Printer {
 public:
  explicit Printer(FILE *fp) : fp(fp) {}

  ~Printer() { flush(); }

  template <bool f = false, typename T, typename... E>
  void write(const T &t, const E &...e) {
    if (f) write_single(' ');
    write_single(t);
    write<true>(e...);
  }

  template <typename... T>
  void writeln(const T &...t) {
    write(t...);
    write_single('\n');
  }

  void flush() {
    fwrite(line, 1, st - line, fp);
    st = line;
  }

 private:
  FILE *fp = nullptr;
  static constexpr size_t line_size = 1 << 16;
  static constexpr size_t int_digits = 20;
  char line[line_size + 1] = {};
  char *st = line;

  template <bool f = false>
  void write() {}

  void write_single(const char &t) {
    if (st + 1 >= line + line_size) flush();
    *st++ = t;
  }

  template <typename T, enable_if_t<is_integral<T>::value, int> = 0>
  void write_single(T s) {
    if (st + int_digits >= line + line_size) flush();
    st += to_chars(st, st + int_digits, s).ptr - st;
  }

  void write_single(const string &s) {
    for (auto &c : s) write_single(c);
  }

  void write_single(const char *s) {
    while (*s != 0) write_single(*s++);
  }

  template <typename T>
  void write_single(const vector<T> &s) {
    for (size_t i = 0; i < s.size(); i++) {
      if (i) write_single(' ');
      write_single(s[i]);
    }
  }
};
#line 1 "other/scanner.hpp"
/**
 * @brief Scanner(高速入力)
 */
struct Scanner {
 public:
  explicit Scanner(FILE *fp) : fp(fp) {}

  template <typename T, typename... E>
  void read(T &t, E &...e) {
    read_single(t);
    read(e...);
  }

 private:
  static constexpr size_t line_size = 1 << 16;
  static constexpr size_t int_digits = 20;
  char line[line_size + 1] = {};
  FILE *fp = nullptr;
  char *st = line;
  char *ed = line;

  void read() {}

  static inline bool is_space(char c) { return c <= ' '; }

  void reread() {
    ptrdiff_t len = ed - st;
    memmove(line, st, len);
    char *tmp = line + len;
    ed = tmp + fread(tmp, 1, line_size - len, fp);
    *ed = 0;
    st = line;
  }

  void skip_space() {
    while (true) {
      if (st == ed) reread();
      while (*st && is_space(*st)) ++st;
      if (st != ed) return;
    }
  }

  template <typename T, enable_if_t<is_integral<T>::value, int> = 0>
  void read_single(T &s) {
    skip_space();
    if (st + int_digits >= ed) reread();
    bool neg = false;
    if (is_signed<T>::value && *st == '-') {
      neg = true;
      ++st;
    }
    typename make_unsigned<T>::type y = *st++ - '0';
    while (*st >= '0') {
      y = 10 * y + *st++ - '0';
    }
    s = (neg ? -y : y);
  }

  template <typename T, enable_if_t<is_same<T, string>::value, int> = 0>
  void read_single(T &s) {
    s = "";
    skip_space();
    while (true) {
      char *base = st;
      while (*st && !is_space(*st)) ++st;
      s += string(base, st);
      if (st != ed) return;
      reread();
    }
  }

  template <typename T>
  void read_single(vector<T> &s) {
    for (auto &d : s) read(d);
  }
};
#line 1 "structure/develop/super-link-cut-tree.hpp"
/**
 * @brief 何でもできるLCT
 */
template <typename LInfo, typename Lazy>
struct SplayTree {
  struct Node {
    Node *l, *r, *p;
    LInfo info;
    Lazy lazy, lbuf;

    explicit Node(const LInfo &info)
        : info(info),
          l(nullptr),
          r(nullptr),
          p(nullptr),
          lazy(Lazy()),
          lbuf(Lazy()) {}
  };

  const LInfo e;

  SplayTree() : e(LInfo()) {}

  using NP = Node *;

  void rotr(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if ((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }

  void rotl(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if ((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }

  const LInfo &get_info(NP t) { return t ? t->info : e; }

  void update(NP t) { t->info.update(get_info(t->l), get_info(t->r)); }

  NP get_right(NP t) {
    while (t->r) t = t->r;
    return t;
  }

  NP alloc(const LInfo &v) {
    auto t = new Node(v);
    update(t);
    return t;
  }

  void propagate(NP t, const Lazy &lazy) {
    t->info.propagate(lazy);
    t->lbuf.propagate(lazy);
    t->lazy.propagate(lazy);
  }

  void push(NP t) {
    if (t->l) propagate(t->l, t->lazy);
    if (t->r) propagate(t->r, t->lazy);
    t->lazy = Lazy();
  }

  void splay(NP t) {
    push(t);
    while (t->p) {
      NP q = t->p;
      if (!q->p) {
        if (q->l == t)
          rotr(t);
        else
          rotl(t);
      } else {
        NP r = q->p;
        if (r->l == q) {
          if (q->l == t)
            rotr(q), rotr(t);
          else
            rotl(t), rotr(t);
        } else {
          if (q->r == t)
            rotl(q), rotl(t);
          else
            rotr(t), rotl(t);
        }
      }
    }
  }

  NP insert(NP t, const LInfo &v) {
    if (not t) {
      t = alloc(v);
      return t;
    } else {
      NP cur = get_right(t), z = alloc(v);
      splay(cur);
      z->p = cur;
      cur->r = z;
      update(cur);
      splay(z);
      return z;
    }
  }

  NP erase(NP t) {
    splay(t);
    NP x = t->l, y = t->r;
    delete t;
    if (not x) {
      t = y;
      if (t) t->p = nullptr;
    } else if (not y) {
      t = x;
      t->p = nullptr;
    } else {
      x->p = nullptr;
      t = get_right(x);
      splay(t);
      t->r = y;
      y->p = t;
      update(t);
    }
    return t;
  }
};

template <template <typename, typename> typename _Info,
          template <typename> typename _LInfo, typename Lazy>
struct SuperLinkCutTree {
  using LInfo = _LInfo<Lazy>;
  using Info = _Info<LInfo, Lazy>;

 private:
  struct Node {
    Node *l, *r, *p;
    Info info;
    typename SplayTree<LInfo, Lazy>::Node *light, *belong;
    bool rev;
    Lazy hlazy, llazy;

    bool is_root() const { return not p or (p->l != this and p->r != this); }

    explicit Node(const Info &info)
        : info(info),
          l(nullptr),
          r(nullptr),
          p(nullptr),
          rev(false),
          light(nullptr),
          belong(nullptr),
          hlazy(Lazy()),
          llazy(Lazy()) {}
  };

 public:
  using NP = Node *;
  SplayTree<LInfo, Lazy> splay_tree;

 private:
  const Info e;

 private:
  void toggle(NP t) {
    swap(t->l, t->r);
    t->info.toggle();
    t->rev ^= true;
  }

  void rotr(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if ((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }

  void rotl(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if ((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }

  void propagate_heavy(NP t, const Lazy &hlazy) {
    t->hlazy.propagate(hlazy);
    t->info.propagate(hlazy);
  }

  void propagate_light(NP t, const Lazy &llazy) {
    t->llazy.propagate(llazy);
    t->info.propagate_light(llazy);
  }

  void propagate_all(NP t, const Lazy &lazy) {
    propagate_heavy(t, lazy);
    propagate_light(t, lazy);
  }

 public:
  SuperLinkCutTree() : e{Info()}, splay_tree{} {}

  void push(NP t) {
    if (t->rev) {
      if (t->l) toggle(t->l);
      if (t->r) toggle(t->r);
      t->rev = false;
    }
    {
      if (t->l) {
        propagate_heavy(t->l, t->hlazy);
        propagate_light(t->l, t->llazy);
      }
      if (t->r) {
        propagate_heavy(t->r, t->hlazy);
        propagate_light(t->r, t->llazy);
      }
      if (t->light) {
        splay_tree.propagate(t->light, t->llazy);
      }
      t->hlazy = Lazy();
      t->llazy = Lazy();
    }
  }

  void push_rev(NP t) {
    if (t->rev) {
      if (t->l) toggle(t->l);
      if (t->r) toggle(t->r);
      t->rev = false;
    }
  }

  const Info &get_info(NP t) { return t ? t->info : e; }

  void update(NP t) {
    t->info.update(get_info(t->l), get_info(t->r),
                   splay_tree.get_info(t->light));
  }

  void splay(NP t) {
    push(t);
    {
      NP rot = t;
      while (not rot->is_root()) rot = rot->p;
      t->belong = rot->belong;
      if (t != rot) rot->belong = nullptr;
    }
    while (not t->is_root()) {
      NP q = t->p;
      if (q->is_root()) {
        push_rev(q), push_rev(t);
        if (q->l == t)
          rotr(t);
        else
          rotl(t);
      } else {
        NP r = q->p;
        push_rev(r), push_rev(q), push_rev(t);
        if (r->l == q) {
          if (q->l == t)
            rotr(q), rotr(t);
          else
            rotl(t), rotr(t);
        } else {
          if (q->r == t)
            rotl(q), rotl(t);
          else
            rotr(t), rotl(t);
        }
      }
    }
  }

  NP expose(NP t) {
    NP rp = nullptr;
    for (NP cur = t; cur; cur = cur->p) {
      splay(cur);
      if (cur->r) {
        cur->light = splay_tree.insert(cur->light, cur->r->info.link());
        cur->r->belong = cur->light;
      }
      cur->r = rp;
      if (cur->r) {
        splay_tree.splay(cur->r->belong);
        propagate_all(cur->r, cur->r->belong->lbuf);
        push(cur->r);
        cur->light = splay_tree.erase(cur->r->belong);
      }
      update(cur);
      rp = cur;
    }
    splay(t);
    return rp;
  }

  void link(NP child, NP parent) {
    expose(parent);
    expose(child);
    child->p = parent;
    parent->r = child;
    update(parent);
  }

  void cut(NP child) {
    expose(child);
    NP parent = child->l;
    child->l = nullptr;
    parent->p = nullptr;
    update(child);
  }

  void evert(NP t) {
    expose(t);
    toggle(t);
    push(t);
  }

  NP alloc(const Info &info) {
    NP t = new Node(info);
    update(t);
    return t;
  }

  bool is_connected(NP u, NP v) {
    expose(u), expose(v);
    return u == v or u->p;
  }

  vector<NP> build(vector<Info> &vs) {
    vector<NP> nodes(vs.size());
    for (int i = 0; i < (int)vs.size(); i++) {
      nodes[i] = alloc(vs[i]);
    }
    return nodes;
  }

  NP lca(NP u, NP v) {
    if (not is_connected(u, v)) return nullptr;
    expose(u);
    return expose(v);
  }

  void set_key(NP t, const Info &v) {
    expose(t);
    t->info = move(v);
    update(t);
  }

  void set_propagate_path(NP t, const Lazy &lazy) {
    expose(t);
    propagate_heavy(t, lazy);
    push(t);
    update(t);
  }

  void set_propagate_path(NP u, NP v, const Lazy &lazy) {
    evert(u);
    set_propagate_path(v, lazy);
  }

  void set_propagate_all(NP t, const Lazy &lazy) {
    expose(t);
    propagate_all(t, lazy);
    push(t);
    update(t);
  }

  void set_propagate_subtree(NP t, const Lazy &lazy) {
    expose(t);
    NP l = t->l;
    t->l = nullptr;
    propagate_all(t, lazy);
    push(t);
    t->l = l;
    update(t);
  }

  const Info &query(NP u) {
    expose(u);
    return get_info(u);
  }

  const Info &query_path(NP u, NP v) {
    evert(u);
    expose(v);
    return get_info(v);
  }

  Info query_subtree(NP u) {
    expose(u);
    NP l = u->l;
    u->l = nullptr;
    update(u);
    auto ret = u->info;
    u->l = l;
    update(u);
    return ret;
  }
};

/*
using T = int64_t;
// 遅延伝搬をするための作用素
struct Lazy {

  // 単位元
  Lazy() {}

  // 初期化
  Lazy(T v) {}

  // 遅延伝搬
  void propagate(const Lazy &p) {}
};

// Light-edge の情報
template< typename Lazy >
struct LInfo {

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  LInfo() {}

  // 初期化
  LInfo(T v) {}

  // l, r は Splay-tree の子 (原理上、各ノード区別はない)
  void update(const LInfo &l, const LInfo &r) {}

  // 部分木への遅延伝搬
  void propagate(const Lazy &p) {}
};

// Heavy-edge の情報
template< typename LInfo, typename Lazy >
struct Info {

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  Info() {}

  // 初期化
  Info(T v) {}

  // 反転
  void toggle() {}

  // pが親, cがheavy-edgeで結ばれた子, lがそれ以外の子
  void update(const Info &p, const Info &c, const LInfo &l) {}

  // 親と light-edge で繋げる
  LInfo link() const { return LInfo(); }

  // 遅延伝搬
  void propagate(const Lazy &p) {}

  // light-edgeに対する遅延伝搬
  // pathとsubtreeの遅延伝搬が両方ある場合に実装する
  void propagate_light(const Lazy &p) {}
};

using LCT = SuperLinkCutTree< Info, LInfo, Lazy >;
*/
#line 2 "structure/develop/dynamic-tree-test.hpp"

/**
 * @brief Dynamic Tree Test
 * @see https://dmoj.ca/problem/ds5
 */
using T = int;
const T inf_max = numeric_limits<T>::max();
const T inf_min = numeric_limits<T>::min();

// 遅延伝搬をする作用素
struct Lazy {
  int type;  // 0: none, 1: change, 2:inc
  T v;

  // 単位元
  Lazy() : type(0) {}

  // 初期化
  constexpr Lazy(int type, T v) : type(type), v(v) {}

  inline constexpr void propagate(const Lazy &p) {
    if (p.type == 0) {
      return;
    }
    if (type == 0 or p.type == 1) {
      type = p.type;
      v = p.v;
    } else {
      v += p.v;
    }
  }
};

// Light-edge の情報
template <typename Lazy>
struct LInfo {
  T min, max, sum, sz;

  T all_min, all_max, all_sum, all_sz;

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  LInfo() : all_min(inf_max), all_max(inf_min), all_sum(0), all_sz(0) {}

  // 初期化
  LInfo(T min, T max, T sum, T sz) : min(min), max(max), sum(sum), sz(sz) {}

  // l, r は Splay-tree の子 (原理上、各ノード区別はない)
  void update(const LInfo &l, const LInfo &r) {
    all_min = std::min({l.all_min, min, r.all_min});
    all_max = std::max({l.all_max, max, r.all_max});
    all_sum = l.all_sum + sum + r.all_sum;
    all_sz = l.all_sz + sz + r.all_sz;
  }

  // light-edgeに対する遅延伝搬
  void propagate(const Lazy &p) {
    if (p.type == 0) {
      return;
    } else if (p.type == 1) {  // change
      min = p.v;
      max = p.v;
      sum = p.v * sz;
      all_min = p.v;
      all_max = p.v;
      all_sum = p.v * all_sz;
    } else {  // inc
      min += p.v;
      max += p.v;
      sum += p.v * sz;
      all_min += p.v;
      all_max += p.v;
      all_sum += p.v * all_sz;
    }
  }
};

// Heavy-edge の情報
template <typename LInfo, typename Lazy>
struct Info {
  T v;

  T path_min, path_max, path_sum, path_sz;
  T light_min, light_max, light_sum, light_sz;

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  Info()
      : light_min(inf_max),
        light_max(inf_min),
        light_sum(0),
        light_sz(0),
        path_min(inf_max),
        path_max(inf_min),
        path_sum(0),
        path_sz(0) {}

  // 初期化
  Info(T v) : v(v) {}

  // 反転
  void toggle() {}

  // pが親, cがheavy-edgeで結ばれた子, lがそれ以外の子
  void update(const Info &p, const Info &c, const LInfo &l) {
    light_min = min({p.light_min, c.light_min, l.all_min});
    light_max = max({p.light_max, c.light_max, l.all_max});
    light_sum = p.light_sum + c.light_sum + l.all_sum;
    light_sz = p.light_sz + c.light_sz + l.all_sz;

    path_min = min({p.path_min, v, c.path_min});
    path_max = max({p.path_max, v, c.path_max});
    path_sum = p.path_sum + v + c.path_sum;
    path_sz = p.path_sz + 1 + c.path_sz;
  }

  // 親と light-edge で繋げる
  LInfo link() const {
    return LInfo(min(light_min, path_min), max(light_max, path_max),
                 path_sum + light_sum, light_sz + path_sz);
  }

  // 遅延伝搬
  void propagate(const Lazy &p) {
    if (p.type == 0) {
      return;
    } else if (p.type == 1) {  // change
      v = p.v;
      path_min = p.v;
      path_max = p.v;
      path_sum = p.v * path_sz;
    } else {  // inc
      v += p.v;
      path_min += p.v;
      path_max += p.v;
      path_sum += p.v * path_sz;
    }
  }

  // light-edgeに対する遅延伝搬
  // pathとsubtreeの遅延伝搬が両方ある場合に実装する
  void propagate_light(const Lazy &p) {
    if (p.type == 0 or light_min == inf_max) {
      return;
    } else if (p.type == 1) {  // change
      light_min = p.v;
      light_max = p.v;
      light_sum = p.v * light_sz;
    } else {  // inc
      light_min += p.v;
      light_max += p.v;
      light_sum += p.v * light_sz;
    }
  }
};

using LCT = SuperLinkCutTree<Info, LInfo, Lazy>;
#line 1 "template/template.hpp"
#include <bits/stdc++.h>

using namespace std;

using int64 = long long;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
  os << p.first << " " << p.second;
  return os;
}

template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  for (int i = 0; i < (int)v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (T &in : v) is >> in;
  return is;
}

template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
  return a < b && (a = b, true);
}

template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
  return a > b && (a = b, true);
}

template <typename T = int64>
vector<T> make_v(size_t a) {
  return vector<T>(a);
}

template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
  return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}

template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
  t = v;
}

template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
  for (auto &e : t) fill_v(e, v);
}

template <typename F>
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward<F>(f)) {}

  template <typename... Args>
  decltype(auto) operator()(Args &&...args) const {
    return F::operator()(*this, forward<Args>(args)...);
  }
};

template <typename F>
inline decltype(auto) MFP(F &&f) {
  return FixPoint<F>{forward<F>(f)};
}
#line 8 "test/verify/dmoj-ds5.hpp"

int main() {
  Scanner in(stdin);
  Printer out(stdout);

  int N, M;
  in.read(N, M);
  vector<vector<int> > g(N);
  for (int i = 0; i + 1 < N; i++) {
    int x, y;
    in.read(x, y);
    --x, --y;
    g[x].emplace_back(y);
    g[y].emplace_back(x);
  }
  LCT lct;
  vector<LCT::NP> vs(N);
  for (int i = 0; i < N; i++) {
    T x;
    in.read(x);
    vs[i] = lct.alloc(x);
  }
  int R;
  in.read(R);
  --R;
  MFP([&](auto dfs, int idx, int par) -> void {
    for (auto &to : g[idx]) {
      if (to != par) {
        lct.link(vs[to], vs[idx]);
        dfs(to, idx);
      }
    }
  })
  (R, -1);

  for (int i = 0; i < M; i++) {
    int k;
    in.read(k);
    if (k == 0) {
      int x, y;
      in.read(x, y);
      --x;
      lct.evert(vs[R]);
      lct.set_propagate_subtree(vs[x], {1, y});
    } else if (k == 1) {
      in.read(R);
      --R;
    } else if (k == 2) {
      int x, y;
      T z;
      in.read(x, y, z);
      --x, --y;
      lct.set_propagate_path(vs[x], vs[y], {1, z});
    } else if (k == 3) {
      int x;
      in.read(x);
      --x;
      lct.evert(vs[R]);
      auto ret = lct.query_subtree(vs[x]);
      out.writeln(min(ret.light_min, ret.path_min));
    } else if (k == 4) {
      int x;
      in.read(x);
      --x;
      lct.evert(vs[R]);
      auto ret = lct.query_subtree(vs[x]);
      out.writeln(max(ret.light_max, ret.path_max));
    } else if (k == 5) {
      int x, y;
      in.read(x, y);
      --x;
      lct.evert(vs[R]);
      lct.set_propagate_subtree(vs[x], {2, y});
    } else if (k == 6) {
      int x, y;
      T z;
      in.read(x, y, z);
      --x, --y;
      lct.set_propagate_path(vs[x], vs[y], {2, z});
    } else if (k == 7) {
      int x, y;
      in.read(x, y);
      --x, --y;
      out.writeln(lct.query_path(vs[x], vs[y]).path_min);
    } else if (k == 8) {
      int x, y;
      in.read(x, y);
      --x, --y;
      out.writeln(lct.query_path(vs[x], vs[y]).path_max);
    } else if (k == 9) {
      int x, y;
      in.read(x, y);
      --x, --y;
      lct.evert(vs[R]);
      if (lct.lca(vs[x], vs[y]) == vs[x]) {
        continue;
      }
      lct.cut(vs[x]);
      lct.link(vs[x], vs[y]);
    } else if (k == 10) {
      int x, y;
      in.read(x, y);
      --x, --y;
      out.writeln(lct.query_path(vs[x], vs[y]).path_sum);
    } else {
      int x;
      in.read(x);
      --x;
      lct.evert(vs[R]);
      auto ret = lct.query_subtree(vs[x]);
      out.writeln(ret.path_sum + ret.light_sum);
    }
  }
}
Back to top page