This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/counting_primes
#include "../../template/template.hpp"
#include "../../math/number-theory/prime-count.hpp"
int main() {
int64_t n;
cin >> n;
PrimeCount<> pc;
cout << pc.pi(n) << "\n";
}
#line 1 "test/verify/yosupo-counting-primes.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/counting_primes
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
return a > b && (a = b, true);
}
template <typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template <typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}
template <typename... Args>
decltype(auto) operator()(Args &&...args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-counting-primes.test.cpp"
#line 1 "math/number-theory/kth-root-integer.hpp"
uint64_t kth_root_integer(uint64_t a, int k) {
if (k == 1) return a;
auto check = [&](uint32_t x) {
uint64_t mul = 1;
for (int j = 0; j < k; j++) {
if (__builtin_mul_overflow(mul, x, &mul)) return false;
}
return mul <= a;
};
uint64_t ret = 0;
for (int i = 31; i >= 0; i--) {
if (check(ret | (1u << i))) ret |= 1u << i;
}
return ret;
}
#line 1 "math/number-theory/prime-table.hpp"
/**
* @brief Prime Table(素数テーブル)
*
*/
vector<bool> prime_table(int n) {
vector<bool> prime(n + 1, true);
if (n >= 0) prime[0] = false;
if (n >= 1) prime[1] = false;
for (int i = 2; i * i <= n; i++) {
if (!prime[i]) continue;
for (int j = i * i; j <= n; j += i) {
prime[j] = false;
}
}
return prime;
}
#line 3 "math/number-theory/prime-count.hpp"
/**
* @brief Prime Count(素数の個数)
*/
template <int64_t LIM = 100000000000LL>
struct PrimeCount {
private:
int64_t sq;
vector<bool> prime;
vector<int64_t> prime_sum, primes;
int64_t p2(int64_t x, int64_t y) {
if (x < 4) return 0;
int64_t a = pi(y);
int64_t b = pi(kth_root_integer(x, 2));
if (a >= b) return 0;
int64_t sum = (a - 2) * (a + 1) / 2 - (b - 2) * (b + 1) / 2;
for (int64_t i = a; i < b; i++) sum += pi(x / primes[i]);
return sum;
}
int64_t phi(int64_t m, int64_t n) {
if (m < 1) return 0;
if (n > m) return 1;
if (n < 1) return m;
if (m <= primes[n - 1] * primes[n - 1]) return pi(m) - n + 1;
if (m <= primes[n - 1] * primes[n - 1] * primes[n - 1] && m <= sq) {
int64_t sx = pi(kth_root_integer(m, 2));
int64_t ans = pi(m) - (sx + n - 2) * (sx - n + 1) / 2;
for (int64_t i = n; i < sx; ++i) ans += pi(m / primes[i]);
return ans;
}
return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
}
public:
PrimeCount() : sq(kth_root_integer(LIM, 2)), prime_sum(sq + 1) {
prime = prime_table(sq);
for (int i = 1; i <= sq; i++) prime_sum[i] = prime_sum[i - 1] + prime[i];
primes.reserve(prime_sum[sq]);
for (int i = 1; i <= sq; i++)
if (prime[i]) primes.push_back(i);
}
int64_t pi(int64_t n) {
if (n <= sq) return prime_sum[n];
int64_t m = kth_root_integer(n, 3);
int64_t a = pi(m);
return phi(n, a) + a - 1 - p2(n, m);
}
};
#line 6 "test/verify/yosupo-counting-primes.test.cpp"
int main() {
int64_t n;
cin >> n;
PrimeCount<> pc;
cout << pc.pi(n) << "\n";
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | Grothendieck_prime_00 | AC | 8 ms | 6 MB |
g++ | boundaryA_00 | AC | 215 ms | 6 MB |
g++ | boundaryA_01 | AC | 126 ms | 6 MB |
g++ | boundaryA_02 | AC | 132 ms | 6 MB |
g++ | boundaryB_00 | AC | 214 ms | 6 MB |
g++ | boundaryB_01 | AC | 126 ms | 6 MB |
g++ | boundaryB_02 | AC | 131 ms | 6 MB |
g++ | example_00 | AC | 8 ms | 6 MB |
g++ | example_01 | AC | 7 ms | 6 MB |
g++ | max_00 | AC | 219 ms | 6 MB |
g++ | max_01 | AC | 218 ms | 6 MB |
g++ | max_02 | AC | 219 ms | 6 MB |
g++ | max_03 | AC | 219 ms | 6 MB |
g++ | max_04 | AC | 219 ms | 6 MB |
g++ | random_00 | AC | 216 ms | 6 MB |
g++ | random_01 | AC | 127 ms | 6 MB |
g++ | random_02 | AC | 132 ms | 6 MB |
g++ | random_03 | AC | 101 ms | 6 MB |
g++ | random_04 | AC | 52 ms | 6 MB |
g++ | small_00 | AC | 8 ms | 6 MB |
g++ | small_01 | AC | 7 ms | 6 MB |
g++ | small_02 | AC | 7 ms | 6 MB |
g++ | small_03 | AC | 7 ms | 6 MB |
g++ | small_04 | AC | 7 ms | 6 MB |
g++ | small_prime_00 | AC | 7 ms | 6 MB |
g++ | small_prime_01 | AC | 7 ms | 6 MB |
g++ | very_small_00 | AC | 7 ms | 6 MB |
g++ | very_small_01 | AC | 7 ms | 6 MB |
g++ | very_small_02 | AC | 7 ms | 6 MB |
g++ | very_small_03 | AC | 7 ms | 6 MB |
g++ | very_small_04 | AC | 7 ms | 6 MB |
clang++ | Grothendieck_prime_00 | AC | 7 ms | 6 MB |
clang++ | boundaryA_00 | AC | 222 ms | 6 MB |
clang++ | boundaryA_01 | AC | 131 ms | 6 MB |
clang++ | boundaryA_02 | AC | 136 ms | 6 MB |
clang++ | boundaryB_00 | AC | 223 ms | 6 MB |
clang++ | boundaryB_01 | AC | 135 ms | 6 MB |
clang++ | boundaryB_02 | AC | 136 ms | 6 MB |
clang++ | example_00 | AC | 7 ms | 6 MB |
clang++ | example_01 | AC | 7 ms | 6 MB |
clang++ | max_00 | AC | 228 ms | 6 MB |
clang++ | max_01 | AC | 228 ms | 6 MB |
clang++ | max_02 | AC | 228 ms | 6 MB |
clang++ | max_03 | AC | 228 ms | 6 MB |
clang++ | max_04 | AC | 228 ms | 6 MB |
clang++ | random_00 | AC | 223 ms | 6 MB |
clang++ | random_01 | AC | 131 ms | 6 MB |
clang++ | random_02 | AC | 137 ms | 6 MB |
clang++ | random_03 | AC | 106 ms | 6 MB |
clang++ | random_04 | AC | 54 ms | 6 MB |
clang++ | small_00 | AC | 7 ms | 6 MB |
clang++ | small_01 | AC | 7 ms | 6 MB |
clang++ | small_02 | AC | 7 ms | 6 MB |
clang++ | small_03 | AC | 7 ms | 6 MB |
clang++ | small_04 | AC | 7 ms | 6 MB |
clang++ | small_prime_00 | AC | 7 ms | 6 MB |
clang++ | small_prime_01 | AC | 7 ms | 6 MB |
clang++ | very_small_00 | AC | 7 ms | 6 MB |
clang++ | very_small_01 | AC | 7 ms | 6 MB |
clang++ | very_small_02 | AC | 7 ms | 6 MB |
clang++ | very_small_03 | AC | 7 ms | 6 MB |
clang++ | very_small_04 | AC | 7 ms | 6 MB |