This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/deque_operate_all_composite
#include "../../template/template.hpp"
#include "../../math/combinatorics/montgomery-mod-int.hpp"
#include "../../structure/others/deque-operate-aggregation.hpp"
#include "../../structure/class/affine.hpp"
using mint = modint998244353;
int main() {
int Q;
cin >> Q;
using pi = Affine< mint >;
auto f = [](const pi &a, const pi &b) -> pi {
return pi::op(a, b);
};
auto que = get_deque_operate_aggregation<pi>(f);
while (Q--) {
int t;
cin >> t;
if (t == 0) {
mint a, b;
cin >> a >> b;
que.push_front(pi(a, b));
} else if (t == 1) {
mint a, b;
cin >> a >> b;
que.push_back(pi(a, b));
} else if(t == 2) {
que.pop_front();
} else if(t == 3) {
que.pop_back();
} else {
mint x;
cin >> x;
if (que.empty()) {
cout << x << "\n";
} else {
auto s = que.all_prod();
cout << s.eval(x) << "\n";
}
}
}
}
#line 1 "test/verify/yosupo-deque-operate-all-composite.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/deque_operate_all_composite
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
return a > b && (a = b, true);
}
template <typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template <typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}
template <typename... Args>
decltype(auto) operator()(Args &&...args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-deque-operate-all-composite.test.cpp"
#line 2 "math/combinatorics/montgomery-mod-int.hpp"
template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
private:
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod_;
for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod_) % mod_;
static_assert(r * mod_ == 1, "invalid, r * mod != 1");
static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
public:
MontgomeryModInt() : x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
}
mint &operator+=(const mint &p) {
if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
return *this;
}
mint &operator-=(const mint &p) {
if (i32(x -= p.x) < 0) x += 2 * mod();
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inv();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const {
return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
}
bool operator!=(const mint &p) const {
return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
}
u32 val() const {
u32 ret = reduce(x);
return ret >= mod() ? ret - mod() : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inv() const { return pow(mod() - 2); }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.val();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static constexpr u32 mod() { return mod_; }
};
template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
#line 6 "test/verify/yosupo-deque-operate-all-composite.test.cpp"
#line 1 "structure/others/deque-operate-aggregation.hpp"
template <typename T, typename F>
struct DequeOperateAggregation {
private:
struct Node {
T val, sum;
Node(const T &val, const T &sum) : val(val), sum(sum) {}
};
const F f;
vector<Node> st[2];
void rebuild() {
if (not st[0].empty()) {
st[0][0].sum = st[0][0].val;
for (int i = 1; i < (int)st[0].size(); i++) {
st[0][i].sum = f(st[0][i].val, st[0][i - 1].sum);
}
}
if (not st[1].empty()) {
st[1][0].sum = st[1][0].val;
for (int i = 1; i < (int)st[1].size(); i++) {
st[1][i].sum = f(st[1][i - 1].sum, st[1][i].val);
}
}
}
public:
DequeOperateAggregation() = default;
explicit DequeOperateAggregation(F f) : f(f) {}
bool empty() const { return st[0].empty() and st[1].empty(); }
size_t size() const { return st[0].size() + st[1].size(); }
T all_prod() const {
assert(not empty());
if (st[0].empty()) {
return st[1].back().sum;
} else if (st[1].empty()) {
return st[0].back().sum;
} else {
return f(st[0].back().sum, st[1].back().sum);
}
}
void push_front(const T &x) {
if (st[0].empty()) {
st[0].emplace_back(x, x);
} else {
st[0].emplace_back(x, f(x, st[0].back().sum));
}
}
void push_back(const T &x) {
if (st[1].empty()) {
st[1].emplace_back(x, x);
} else {
st[1].emplace_back(x, f(st[1].back().sum, x));
}
}
void pop_front() {
assert(not empty());
if (st[0].empty()) {
auto m = st[1].size() / 2;
st[0] = {st[1].rbegin() + m, st[1].rend()};
st[1] = {st[1].end() - m, st[1].end()};
rebuild();
}
st[0].pop_back();
}
void pop_back() {
assert(not empty());
if (st[1].empty()) {
auto m = st[0].size() / 2;
st[1] = {st[0].rbegin() + m, st[0].rend()};
st[0] = {st[0].end() - m, st[0].end()};
rebuild();
}
st[1].pop_back();
}
};
template <typename T, typename F>
DequeOperateAggregation<T, F> get_deque_operate_aggregation(const F &f) {
return DequeOperateAggregation<T, F>{f};
}
#line 1 "structure/class/affine.hpp"
template <typename T>
struct Affine {
T a, b; // ax+b
Affine() : a(1), b(0) {}
Affine(T a, T b) : a(a), b(b) {}
T eval(T x) const { return a * x + b; }
static constexpr Affine op(const Affine& l, const Affine& r) {
return {l.a * r.a, l.b * r.a + r.b};
}
constexpr bool operator==(const Affine& p) const {
return a == p.a and b == p.b;
}
constexpr bool operator!=(const Affine& p) const {
return a != p.a or b != p.b;
}
};
#line 9 "test/verify/yosupo-deque-operate-all-composite.test.cpp"
using mint = modint998244353;
int main() {
int Q;
cin >> Q;
using pi = Affine< mint >;
auto f = [](const pi &a, const pi &b) -> pi {
return pi::op(a, b);
};
auto que = get_deque_operate_aggregation<pi>(f);
while (Q--) {
int t;
cin >> t;
if (t == 0) {
mint a, b;
cin >> a >> b;
que.push_front(pi(a, b));
} else if (t == 1) {
mint a, b;
cin >> a >> b;
que.push_back(pi(a, b));
} else if(t == 2) {
que.pop_front();
} else if(t == 3) {
que.pop_back();
} else {
mint x;
cin >> x;
if (que.empty()) {
cout << x << "\n";
} else {
auto s = que.all_prod();
cout << s.eval(x) << "\n";
}
}
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | example_00 | AC | 5 ms | 3 MB |
g++ | example_01 | AC | 4 ms | 3 MB |
g++ | large_max_00 | AC | 77 ms | 8 MB |
g++ | large_max_01 | AC | 78 ms | 8 MB |
g++ | large_min_00 | AC | 71 ms | 3 MB |
g++ | large_min_01 | AC | 71 ms | 3 MB |
g++ | large_triangle_00 | AC | 69 ms | 4 MB |
g++ | large_triangle_01 | AC | 68 ms | 5 MB |
g++ | max_random_00 | AC | 90 ms | 14 MB |
g++ | max_random_01 | AC | 93 ms | 14 MB |
g++ | max_random_02 | AC | 93 ms | 14 MB |
g++ | random_00 | AC | 61 ms | 5 MB |
g++ | random_01 | AC | 70 ms | 6 MB |
g++ | random_02 | AC | 13 ms | 4 MB |
g++ | small_00 | AC | 5 ms | 3 MB |
g++ | small_01 | AC | 5 ms | 3 MB |
clang++ | example_00 | AC | 5 ms | 3 MB |
clang++ | example_01 | AC | 4 ms | 3 MB |
clang++ | large_max_00 | AC | 73 ms | 8 MB |
clang++ | large_max_01 | AC | 75 ms | 8 MB |
clang++ | large_min_00 | AC | 70 ms | 3 MB |
clang++ | large_min_01 | AC | 70 ms | 3 MB |
clang++ | large_triangle_00 | AC | 67 ms | 4 MB |
clang++ | large_triangle_01 | AC | 64 ms | 5 MB |
clang++ | max_random_00 | AC | 86 ms | 14 MB |
clang++ | max_random_01 | AC | 84 ms | 14 MB |
clang++ | max_random_02 | AC | 84 ms | 14 MB |
clang++ | random_00 | AC | 57 ms | 5 MB |
clang++ | random_01 | AC | 65 ms | 6 MB |
clang++ | random_02 | AC | 12 ms | 4 MB |
clang++ | small_00 | AC | 4 ms | 3 MB |
clang++ | small_01 | AC | 4 ms | 3 MB |