Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:heavy_check_mark: test/verify/yosupo-point-set-range-composite-2.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/point_set_range_composite

#include "../../template/template.hpp"

#include "../../structure/bbst/lazy-reversible-splay-tree.hpp"

#include "../../math/combinatorics/montgomery-mod-int.hpp"

using mint = modint998244353;

int main() {
  int N, Q;
  cin >> N >> Q;
  using pi = pair< mint, mint >;
  auto f = [](const pi &a, const pi &b) -> pi {
    return {a.first * b.first, a.second * b.first + b.second};
  };
  LazyReversibleSplayTree< pi > seg(f, pi(1, 0));
  vector< pi > V(N);
  for(int i = 0; i < N; i++) {
    cin >> V[i].first >> V[i].second;
  }
  auto root = seg.build(V);
  for(int i = 0; i < Q; i++) {
    int t;
    cin >> t;
    if(t == 0) {
      int p;
      mint a, b;
      cin >> p >> a >> b;
      seg.set_element(root, p, pi(a, b));
    } else {
      int l, r;
      mint x;
      cin >> l >> r >> x;
      auto ret = seg.query(root, l, r);
      cout << ret.first * x + ret.second << "\n";
    }
  }
}
#line 1 "test/verify/yosupo-point-set-range-composite-2.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/point_set_range_composite

#line 1 "template/template.hpp"
#include<bits/stdc++.h>

using namespace std;

using int64 = long long;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};
 
template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}
#line 4 "test/verify/yosupo-point-set-range-composite-2.test.cpp"

#line 1 "structure/bbst/lazy-reversible-splay-tree.hpp"
/**
 * @brief Lazy-Reversible-Splay-Tree(遅延伝搬反転可能Splay木)
 */
template< typename Monoid = int, typename OperatorMonoid = Monoid >
struct LazyReversibleSplayTree {
public:
  using F = function< Monoid(Monoid, Monoid) >;
  using G = function< Monoid(Monoid, OperatorMonoid) >;
  using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;
  using S = function< Monoid(Monoid) >;

  struct Node {
    Node *l, *r, *p;
    Monoid key, sum;
    OperatorMonoid lazy;
    bool rev;
    size_t sz;

    bool is_root() const {
      return !p || (p->l != this && p->r != this);
    }

    Node(const Monoid &key, const OperatorMonoid &om) :
        key(key), sum(key), lazy(om), sz(1), rev(false),
        l(nullptr), r(nullptr), p(nullptr) {}
  };

  LazyReversibleSplayTree(const F &f, const Monoid &M1) :
      LazyReversibleSplayTree(f, [](const Monoid &a) { return a; }, M1) {}

  LazyReversibleSplayTree(const F &f, const S &s, const Monoid &M1) :
      LazyReversibleSplayTree(f, G(), H(), s, M1, OperatorMonoid()) {}

  LazyReversibleSplayTree(const F &f, const G &g, const H &h, const S &s,
                          const Monoid &M1, const OperatorMonoid &OM0) :
      f(f), g(g), h(h), s(s), M1(M1), OM0(OM0) {}


  inline size_t count(const Node *t) { return t ? t->sz : 0; }

  inline const Monoid &sum(const Node *t) { return t ? t->sum : M1; }

  Node *alloc(const Monoid &v = Monoid()) {
    return new Node(v, OM0);
  }

  void splay(Node *t) {
    push(t);
    while(!t->is_root()) {
      auto *q = t->p;
      if(q->is_root()) {
        push(q), push(t);
        if(q->l == t) rotr(t);
        else rotl(t);
      } else {
        auto *r = q->p;
        push(r), push(q), push(t);
        if(r->l == q) {
          if(q->l == t) rotr(q), rotr(t);
          else rotl(t), rotr(t);
        } else {
          if(q->r == t) rotl(q), rotl(t);
          else rotr(t), rotl(t);
        }
      }
    }
  }

  Node *push_front(Node *t, const Monoid &v = Monoid()) {
    if(!t) {
      t = alloc(v);
      return t;
    } else {
      splay(t);
      Node *cur = get_left(t), *z = alloc(v);
      splay(cur);
      z->p = cur;
      cur->l = z;
      splay(z);
      return z;
    }
  }

  Node *push_back(Node *t, const Monoid &v = Monoid()) {
    if(!t) {
      t = alloc(v);
      return t;
    } else {
      splay(t);
      Node *cur = get_right(t), *z = alloc(v);
      splay(cur);
      z->p = cur;
      cur->r = z;
      splay(z);
      return z;
    }
  }

  Node *erase(Node *t) {
    splay(t);
    Node *x = t->l, *y = t->r;
    delete t;
    if(!x) {
      t = y;
      if(t) t->p = nullptr;
    } else if(!y) {
      t = x;
      t->p = nullptr;
    } else {
      x->p = nullptr;
      t = get_right(x);
      splay(t);
      t->r = y;
      y->p = t;
    }
    return t;
  }

  Node *get_left(Node *t) const {
    while(t->l) t = t->l;
    return t;
  }

  Node *get_right(Node *t) const {
    while(t->r) t = t->r;
    return t;
  }

  void set_propagate(Node *&t, int a, int b, const OperatorMonoid &pp) {
    splay(t);
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    set_propagate(y.first, pp);
    t = merge(x.first, y.first, y.second);
  }

  virtual void set_propagate(Node *&t, const OperatorMonoid &pp) {
    splay(t);
    propagate(t, pp);
    push(t);
  }

  pair< Node *, Node * > split(Node *t, int k) {
    if(!t) return {nullptr, nullptr};
    push(t);
    if(k <= count(t->l)) {
      auto x = split(t->l, k);
      t->l = x.second;
      t->p = nullptr;
      if(x.second) x.second->p = t;
      return {x.first, update(t)};
    } else {
      auto x = split(t->r, k - count(t->l) - 1);
      t->r = x.first;
      t->p = nullptr;
      if(x.first) x.first->p = t;
      return {update(t), x.second};
    }
  }

  tuple< Node *, Node *, Node * > split3(Node *t, int a, int b) {
    splay(t);
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    return make_tuple(x.first, y.first, y.second);
  }

  template< typename ... Args >
  Node *merge(Node *l, Args ...rest) {
    Node *r = merge(rest...);
    if(!l && !r) return nullptr;
    if(!l) return splay(r), r;
    if(!r) return splay(l), l;
    splay(l), splay(r);
    l = get_right(l);
    splay(l);
    l->r = r;
    r->p = l;
    update(l);
    return l;
  }

  void insert(Node *&t, int k, const Monoid &v) {
    splay(t);
    auto x = split(t, k);
    t = merge(x.first, alloc(v), x.second);
  }

  Monoid erase(Node *&t, int k) {
    splay(t);
    auto x = split(t, k);
    auto y = split(x.second, 1);
    auto v = y.first->c;
    delete y.first;
    t = merge(x.first, y.second);
    return v;
  }

  Monoid query(Node *&t, int a, int b) {
    splay(t);
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    auto ret = sum(y.first);
    t = merge(x.first, y.first, y.second);
    return ret;
  }

  Node *build(const vector< Monoid > &v) {
    return build(0, (int) v.size(), v);
  }

  void toggle(Node *t) {
    swap(t->l, t->r);
    t->sum = s(t->sum);
    t->rev ^= true;
  }

  Node *update(Node *t) {
    t->sz = 1;
    t->sum = t->key;
    if(t->l) t->sz += t->l->sz, t->sum = f(t->l->sum, t->sum);
    if(t->r) t->sz += t->r->sz, t->sum = f(t->sum, t->r->sum);
    return t;
  }

  void push(Node *t) {
    if(t->lazy != OM0) {
      if(t->l) propagate(t->l, t->lazy);
      if(t->r) propagate(t->r, t->lazy);
      t->lazy = OM0;
    }
    if(t->rev) {
      if(t->l) toggle(t->l);
      if(t->r) toggle(t->r);
      t->rev = false;
    }
  }

  void set_element(Node *&t, int k, const Monoid &x) {
    splay(t);
    sub_set_element(t, k, x);
  }

private:
  const Monoid M1;
  const OperatorMonoid OM0;
  const F f;
  const G g;
  const H h;
  const S s;

  Node *build(int l, int r, const vector< Monoid > &v) {
    if(l + 1 >= r) return alloc(v[l]);
    return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
  }

  void propagate(Node *t, const OperatorMonoid &x) {
    t->lazy = h(t->lazy, x);
    t->key = g(t->key, x);
    t->sum = g(t->sum, x);
  }

  void rotr(Node *t) {
    auto *x = t->p, *y = x->p;
    if((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
      update(y);
    }
  }

  void rotl(Node *t) {
    auto *x = t->p, *y = x->p;
    if((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
      update(y);
    }
  }

  Node *merge(Node *l) {
    return l;
  }

  Node *sub_set_element(Node *&t, int k, const Monoid &x) {
    push(t);
    if(k < count(t->l)) {
      return sub_set_element(t->l, k, x);
    } else if(k == count(t->l)) {
      t->key = x;
      splay(t);
      return t;
    } else {
      return sub_set_element(t->r, k - count(t->l) - 1, x);
    }
  }
};
#line 6 "test/verify/yosupo-point-set-range-composite-2.test.cpp"

#line 2 "math/combinatorics/montgomery-mod-int.hpp"

template< uint32_t mod_, bool fast = false >
struct MontgomeryModInt {
private:
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using i64 = int64_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod_;
    for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
    return ret;
  }

  static constexpr u32 r = get_r();

  static constexpr u32 n2 = -u64(mod_) % mod_;

  static_assert(r * mod_ == 1, "invalid, r * mod != 1");
  static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");

  u32 x;

public:
  MontgomeryModInt(): x{} {}

  MontgomeryModInt(const i64 &a)
      : x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}

  static constexpr u32 reduce(const u64 &b) {
    return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
  }

  mint &operator+=(const mint &p) {
    if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
    return *this;
  }

  mint &operator-=(const mint &p) {
    if (i32(x -= p.x) < 0) x += 2 * mod();
    return *this;
  }

  mint &operator*=(const mint &p) {
    x = reduce(u64(x) * p.x);
    return *this;
  }

  mint &operator/=(const mint &p) {
    *this *= p.inv();
    return *this;
  }

  mint operator-() const { return mint() - *this; }

  mint operator+(const mint &p) const { return mint(*this) += p; }

  mint operator-(const mint &p) const { return mint(*this) -= p; }

  mint operator*(const mint &p) const { return mint(*this) *= p; }

  mint operator/(const mint &p) const { return mint(*this) /= p; }

  bool operator==(const mint &p) const {
    return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
  }

  bool operator!=(const mint &p) const {
    return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
  }

  u32 val() const {
    u32 ret = reduce(x);
    return ret >= mod() ? ret - mod() : ret;
  }

  mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  mint inv() const {
    return pow(mod() - 2);
  }

  friend ostream &operator<<(ostream &os, const mint &p) {
    return os << p.val();
  }

  friend istream &operator>>(istream &is, mint &a) {
    i64 t;
    is >> t;
    a = mint(t);
    return is;
  }

  static constexpr u32 mod() { return mod_; }
};

template< uint32_t mod >
using modint = MontgomeryModInt< mod >;
using modint998244353 = modint< 998244353 >;
using modint1000000007 = modint< 1000000007 >;
#line 8 "test/verify/yosupo-point-set-range-composite-2.test.cpp"

using mint = modint998244353;

int main() {
  int N, Q;
  cin >> N >> Q;
  using pi = pair< mint, mint >;
  auto f = [](const pi &a, const pi &b) -> pi {
    return {a.first * b.first, a.second * b.first + b.second};
  };
  LazyReversibleSplayTree< pi > seg(f, pi(1, 0));
  vector< pi > V(N);
  for(int i = 0; i < N; i++) {
    cin >> V[i].first >> V[i].second;
  }
  auto root = seg.build(V);
  for(int i = 0; i < Q; i++) {
    int t;
    cin >> t;
    if(t == 0) {
      int p;
      mint a, b;
      cin >> p >> a >> b;
      seg.set_element(root, p, pi(a, b));
    } else {
      int l, r;
      mint x;
      cin >> l >> r >> x;
      auto ret = seg.query(root, l, r);
      cout << ret.first * x + ret.second << "\n";
    }
  }
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 6 ms 4 MB
g++ max_random_00 :heavy_check_mark: AC 2129 ms 46 MB
g++ max_random_01 :heavy_check_mark: AC 2093 ms 46 MB
g++ max_random_02 :heavy_check_mark: AC 2070 ms 46 MB
g++ max_random_03 :heavy_check_mark: AC 2118 ms 46 MB
g++ max_random_04 :heavy_check_mark: AC 2188 ms 46 MB
g++ random_00 :heavy_check_mark: AC 1697 ms 37 MB
g++ random_01 :heavy_check_mark: AC 1807 ms 43 MB
g++ random_02 :heavy_check_mark: AC 1095 ms 8 MB
g++ random_03 :heavy_check_mark: AC 219 ms 40 MB
g++ random_04 :heavy_check_mark: AC 444 ms 27 MB
g++ small_00 :heavy_check_mark: AC 7 ms 4 MB
g++ small_01 :heavy_check_mark: AC 7 ms 4 MB
g++ small_02 :heavy_check_mark: AC 7 ms 4 MB
g++ small_03 :heavy_check_mark: AC 7 ms 4 MB
g++ small_04 :heavy_check_mark: AC 7 ms 4 MB
clang++ example_00 :heavy_check_mark: AC 7 ms 4 MB
clang++ max_random_00 :heavy_check_mark: AC 1593 ms 46 MB
clang++ max_random_01 :heavy_check_mark: AC 1624 ms 46 MB
clang++ max_random_02 :heavy_check_mark: AC 1610 ms 46 MB
clang++ max_random_03 :heavy_check_mark: AC 1594 ms 46 MB
clang++ max_random_04 :heavy_check_mark: AC 1582 ms 46 MB
clang++ random_00 :heavy_check_mark: AC 1283 ms 37 MB
clang++ random_01 :heavy_check_mark: AC 1316 ms 43 MB
clang++ random_02 :heavy_check_mark: AC 792 ms 8 MB
clang++ random_03 :heavy_check_mark: AC 190 ms 40 MB
clang++ random_04 :heavy_check_mark: AC 323 ms 27 MB
clang++ small_00 :heavy_check_mark: AC 7 ms 4 MB
clang++ small_01 :heavy_check_mark: AC 7 ms 4 MB
clang++ small_02 :heavy_check_mark: AC 7 ms 4 MB
clang++ small_03 :heavy_check_mark: AC 7 ms 4 MB
clang++ small_04 :heavy_check_mark: AC 7 ms 4 MB
Back to top page