This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/primality_test
#include "../../template/template.hpp"
#include "../../math/number-theory/fast-prime-factorization.hpp"
int main() {
int Q;
cin >> Q;
while(Q--) {
int64 N;
cin >> N;
cout << (FastPrimeFactorization::is_prime(N) ? "Yes" : "No") << "\n";
}
}
#line 1 "test/verify/yosupo-primality-test.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/primality_test
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
return a > b && (a = b, true);
}
template <typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template <typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}
template <typename... Args>
decltype(auto) operator()(Args &&...args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-primality-test.test.cpp"
#line 1 "math/number-theory/fast-prime-factorization.hpp"
namespace FastPrimeFactorization {
template <typename word, typename dword, typename sword>
struct UnsafeMod {
UnsafeMod() : x(0) {}
UnsafeMod(word _x) : x(init(_x)) {}
bool operator==(const UnsafeMod &rhs) const { return x == rhs.x; }
bool operator!=(const UnsafeMod &rhs) const { return x != rhs.x; }
UnsafeMod &operator+=(const UnsafeMod &rhs) {
if ((x += rhs.x) >= mod) x -= mod;
return *this;
}
UnsafeMod &operator-=(const UnsafeMod &rhs) {
if (sword(x -= rhs.x) < 0) x += mod;
return *this;
}
UnsafeMod &operator*=(const UnsafeMod &rhs) {
x = reduce(dword(x) * rhs.x);
return *this;
}
UnsafeMod operator+(const UnsafeMod &rhs) const {
return UnsafeMod(*this) += rhs;
}
UnsafeMod operator-(const UnsafeMod &rhs) const {
return UnsafeMod(*this) -= rhs;
}
UnsafeMod operator*(const UnsafeMod &rhs) const {
return UnsafeMod(*this) *= rhs;
}
UnsafeMod pow(uint64_t e) const {
UnsafeMod ret(1);
for (UnsafeMod base = *this; e; e >>= 1, base *= base) {
if (e & 1) ret *= base;
}
return ret;
}
word get() const { return reduce(x); }
static constexpr int word_bits = sizeof(word) * 8;
static word modulus() { return mod; }
static word init(word w) { return reduce(dword(w) * r2); }
static void set_mod(word m) {
mod = m;
inv = mul_inv(mod);
r2 = -dword(mod) % mod;
}
static word reduce(dword x) {
word y =
word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits);
return sword(y) < 0 ? y + mod : y;
}
static word mul_inv(word n, int e = 6, word x = 1) {
return !e ? x : mul_inv(n, e - 1, x * (2 - x * n));
}
static word mod, inv, r2;
word x;
};
using uint128_t = __uint128_t;
using Mod64 = UnsafeMod<uint64_t, uint128_t, int64_t>;
template <>
uint64_t Mod64::mod = 0;
template <>
uint64_t Mod64::inv = 0;
template <>
uint64_t Mod64::r2 = 0;
using Mod32 = UnsafeMod<uint32_t, uint64_t, int32_t>;
template <>
uint32_t Mod32::mod = 0;
template <>
uint32_t Mod32::inv = 0;
template <>
uint32_t Mod32::r2 = 0;
bool miller_rabin_primality_test_uint64(uint64_t n) {
Mod64::set_mod(n);
uint64_t d = n - 1;
while (d % 2 == 0) d /= 2;
Mod64 e{1}, rev{n - 1};
// http://miller-rabin.appspot.com/ < 2^64
for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (n <= a) break;
uint64_t t = d;
Mod64 y = Mod64(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool miller_rabin_primality_test_uint32(uint32_t n) {
Mod32::set_mod(n);
uint32_t d = n - 1;
while (d % 2 == 0) d /= 2;
Mod32 e{1}, rev{n - 1};
for (uint32_t a : {2, 7, 61}) {
if (n <= a) break;
uint32_t t = d;
Mod32 y = Mod32(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(uint64_t n) {
if (n == 2) return true;
if (n == 1 || n % 2 == 0) return false;
if (n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n);
return miller_rabin_primality_test_uint64(n);
}
uint64_t pollard_rho(uint64_t n) {
if (is_prime(n)) return n;
if (n % 2 == 0) return 2;
Mod64::set_mod(n);
uint64_t d;
Mod64 one{1};
for (Mod64 c{one};; c += one) {
Mod64 x{2}, y{2};
do {
x = x * x + c;
y = y * y + c;
y = y * y + c;
d = __gcd((x - y).get(), n);
} while (d == 1);
if (d < n) return d;
}
assert(0);
}
vector<uint64_t> prime_factor(uint64_t n) {
if (n <= 1) return {};
uint64_t p = pollard_rho(n);
if (p == n) return {p};
auto l = prime_factor(p);
auto r = prime_factor(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
}; // namespace FastPrimeFactorization
#line 6 "test/verify/yosupo-primality-test.test.cpp"
int main() {
int Q;
cin >> Q;
while(Q--) {
int64 N;
cin >> N;
cout << (FastPrimeFactorization::is_prime(N) ? "Yes" : "No") << "\n";
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | all_prime_00 | AC | 197 ms | 3 MB |
g++ | carmichael_00 | AC | 5 ms | 3 MB |
g++ | example_00 | AC | 5 ms | 3 MB |
g++ | hack_issue996_00 | AC | 5 ms | 3 MB |
g++ | less_1000000000_00 | AC | 22 ms | 3 MB |
g++ | prod_two_prime_00 | AC | 44 ms | 3 MB |
g++ | random_00 | AC | 35 ms | 3 MB |
g++ | random_01 | AC | 34 ms | 3 MB |
g++ | random_02 | AC | 34 ms | 3 MB |
g++ | small_00 | AC | 19 ms | 3 MB |
clang++ | all_prime_00 | AC | 229 ms | 3 MB |
clang++ | carmichael_00 | AC | 5 ms | 3 MB |
clang++ | example_00 | AC | 4 ms | 3 MB |
clang++ | hack_issue996_00 | AC | 4 ms | 3 MB |
clang++ | less_1000000000_00 | AC | 23 ms | 3 MB |
clang++ | prod_two_prime_00 | AC | 48 ms | 3 MB |
clang++ | random_00 | AC | 38 ms | 3 MB |
clang++ | random_01 | AC | 38 ms | 3 MB |
clang++ | random_02 | AC | 37 ms | 3 MB |
clang++ | small_00 | AC | 19 ms | 3 MB |