This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
#include "../../template/template.hpp"
#include "../../structure/segment-tree/dual-segment-tree.hpp"
#include "../../structure/class/affine.hpp"
#include "../../math/combinatorics/montgomery-mod-int.hpp"
using mint = modint998244353;
int main() {
int N, Q;
cin >> N >> Q;
vector< int > A(N);
for(auto& a : A) cin >> a;
using pi = Affine< mint >;
auto h = [](const pi& a, const pi& b) -> pi {
return pi::op(a, b);
};
auto id = []() -> pi { return {1, 0}; };
DualSegmentTree seg(LambdaAct(h, id), N);
while(Q--) {
int t;
cin >> t;
if(t == 0) {
int l, r, b, c;
cin >> l >> r >> b >> c;
seg.apply(l, r, {b, c});
} else {
int i;
cin >> i;
cout << seg[i].eval(A[i]).val() << "\n";
}
}
}
#line 1 "test/verify/yosupo-range-affine-point-get.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
return a > b && (a = b, true);
}
template <typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template <typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}
template <typename... Args>
decltype(auto) operator()(Args &&...args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-range-affine-point-get.test.cpp"
#line 2 "structure/class/act.hpp"
template <typename F2, typename Composition, typename Id>
struct LambdaAct {
using F = F2;
F composition(const F &f, const F &g) const { return _composition(f, g); }
F id() const { return _id(); }
LambdaAct(Composition _composition, Id _id)
: _composition(_composition), _id(_id) {}
private:
Composition _composition;
Id _id;
};
template <typename Composition, typename Id>
LambdaAct(Composition _composition, Id _id)
-> LambdaAct<decltype(_id()), Composition, Id>;
/*
struct Act {
using F = ?;
static constexpr F composition(const F &f, const F &g) {}
static constexpr F id() const {}
};
*/
#line 2 "structure/segment-tree/dual-segment-tree.hpp"
template <typename Act>
struct DualSegmentTree {
using F = typename Act::F;
private:
int sz, height;
vector<F> lazy;
Act m;
inline void propagate(int k) {
if (lazy[k] != m.id()) {
lazy[2 * k + 0] = m.composition(lazy[2 * k + 0], lazy[k]);
lazy[2 * k + 1] = m.composition(lazy[2 * k + 1], lazy[k]);
lazy[k] = m.id();
}
}
inline void thrust(int k) {
for (int i = height; i > 0; i--) propagate(k >> i);
}
public:
DualSegmentTree(Act m, int n) : m(m) {
sz = 1;
height = 0;
while (sz < n) sz <<= 1, height++;
lazy.assign(2 * sz, m.id());
}
F get(int k) {
thrust(k += sz);
return lazy[k];
}
F operator[](int k) { return get(k); }
void apply(int a, int b, const F &f) {
thrust(a += sz);
thrust(b += sz - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) lazy[l] = m.composition(lazy[l], f), ++l;
if (r & 1) --r, lazy[r] = m.composition(lazy[r], f);
}
}
};
#line 1 "structure/class/affine.hpp"
template <typename T>
struct Affine {
T a, b; // ax+b
Affine() : a(1), b(0) {}
Affine(T a, T b) : a(a), b(b) {}
T eval(T x) const { return a * x + b; }
static constexpr Affine op(const Affine& l, const Affine& r) {
return {l.a * r.a, l.b * r.a + r.b};
}
constexpr bool operator==(const Affine& p) const {
return a == p.a and b == p.b;
}
constexpr bool operator!=(const Affine& p) const {
return a != p.a or b != p.b;
}
};
#line 7 "test/verify/yosupo-range-affine-point-get.test.cpp"
#line 2 "math/combinatorics/montgomery-mod-int.hpp"
template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
private:
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod_;
for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod_) % mod_;
static_assert(r * mod_ == 1, "invalid, r * mod != 1");
static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
public:
MontgomeryModInt() : x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
}
mint &operator+=(const mint &p) {
if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
return *this;
}
mint &operator-=(const mint &p) {
if (i32(x -= p.x) < 0) x += 2 * mod();
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inv();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const {
return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
}
bool operator!=(const mint &p) const {
return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
}
u32 val() const {
u32 ret = reduce(x);
return ret >= mod() ? ret - mod() : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inv() const { return pow(mod() - 2); }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.val();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static constexpr u32 mod() { return mod_; }
};
template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
#line 9 "test/verify/yosupo-range-affine-point-get.test.cpp"
using mint = modint998244353;
int main() {
int N, Q;
cin >> N >> Q;
vector< int > A(N);
for(auto& a : A) cin >> a;
using pi = Affine< mint >;
auto h = [](const pi& a, const pi& b) -> pi {
return pi::op(a, b);
};
auto id = []() -> pi { return {1, 0}; };
DualSegmentTree seg(LambdaAct(h, id), N);
while(Q--) {
int t;
cin >> t;
if(t == 0) {
int l, r, b, c;
cin >> l >> r >> b >> c;
seg.apply(l, r, {b, c});
} else {
int i;
cin >> i;
cout << seg[i].eval(A[i]).val() << "\n";
}
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | example_00 | AC | 5 ms | 3 MB |
g++ | max_random_00 | AC | 324 ms | 13 MB |
g++ | max_random_01 | AC | 316 ms | 13 MB |
g++ | max_random_02 | AC | 325 ms | 13 MB |
g++ | random_00 | AC | 255 ms | 13 MB |
g++ | random_01 | AC | 266 ms | 13 MB |
g++ | random_02 | AC | 185 ms | 4 MB |
g++ | small_00 | AC | 5 ms | 3 MB |
g++ | small_01 | AC | 5 ms | 3 MB |
g++ | small_02 | AC | 5 ms | 3 MB |
g++ | small_03 | AC | 5 ms | 3 MB |
g++ | small_04 | AC | 5 ms | 3 MB |
g++ | small_05 | AC | 5 ms | 3 MB |
g++ | small_06 | AC | 5 ms | 3 MB |
g++ | small_07 | AC | 5 ms | 3 MB |
g++ | small_08 | AC | 5 ms | 3 MB |
g++ | small_09 | AC | 5 ms | 3 MB |
g++ | small_random_00 | AC | 5 ms | 4 MB |
g++ | small_random_01 | AC | 5 ms | 3 MB |
clang++ | example_00 | AC | 5 ms | 3 MB |
clang++ | max_random_00 | AC | 330 ms | 13 MB |
clang++ | max_random_01 | AC | 333 ms | 13 MB |
clang++ | max_random_02 | AC | 330 ms | 13 MB |
clang++ | random_00 | AC | 262 ms | 13 MB |
clang++ | random_01 | AC | 275 ms | 13 MB |
clang++ | random_02 | AC | 193 ms | 4 MB |
clang++ | small_00 | AC | 5 ms | 3 MB |
clang++ | small_01 | AC | 5 ms | 3 MB |
clang++ | small_02 | AC | 5 ms | 3 MB |
clang++ | small_03 | AC | 5 ms | 3 MB |
clang++ | small_04 | AC | 5 ms | 3 MB |
clang++ | small_05 | AC | 5 ms | 3 MB |
clang++ | small_06 | AC | 5 ms | 3 MB |
clang++ | small_07 | AC | 5 ms | 3 MB |
clang++ | small_08 | AC | 5 ms | 3 MB |
clang++ | small_09 | AC | 5 ms | 3 MB |
clang++ | small_random_00 | AC | 5 ms | 3 MB |
clang++ | small_random_01 | AC | 5 ms | 3 MB |