Luzhiled's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub ei1333/library

:heavy_check_mark: test/verify/yosupo-static-rectangle-add-rectangle-sum.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum

#include "../../template/template.hpp"

#include "../../other/static-rectangle-add-rectangle-sum.hpp"

#include "../../math/combinatorics/montgomery-mod-int.hpp"

using mint = modint998244353;

int main() {
  int N, Q;
  cin >> N >> Q;
  StaticRectangleAddRectangleSum< int, mint > mat;
  for(int i = 0; i < N; i++) {
    int l, d, r, u, w;
    cin >> l >> d >> r >> u >> w;
    mat.add_rectangle(l, d, r, u, w);
  }
  for(int i = 0; i < Q; i++) {
    int l, d, r, u;
    cin >> l >> d >> r >> u;
    mat.add_query(l, d, r, u);
  }
  for(auto& p : mat.calculate_queries()) {
    cout << p.val() << "\n";
  }
}
#line 1 "test/verify/yosupo-static-rectangle-add-rectangle-sum.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum

#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif

using namespace std;

using int64 = long long;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
  os << p.first << " " << p.second;
  return os;
}

template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  for (int i = 0; i < (int)v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (T &in : v) is >> in;
  return is;
}

template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
  return a < b && (a = b, true);
}

template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
  return a > b && (a = b, true);
}

template <typename T = int64>
vector<T> make_v(size_t a) {
  return vector<T>(a);
}

template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
  return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}

template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
  t = v;
}

template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
  for (auto &e : t) fill_v(e, v);
}

template <typename F>
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}

  template <typename... Args>
  decltype(auto) operator()(Args &&...args) const {
    return F::operator()(*this, std::forward<Args>(args)...);
  }
};

template <typename F>
inline decltype(auto) MFP(F &&f) {
  return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-static-rectangle-add-rectangle-sum.test.cpp"

#line 1 "structure/others/binary-indexed-tree.hpp"
template <typename T>
struct BinaryIndexedTree {
 private:
  int n;
  vector<T> data;

 public:
  BinaryIndexedTree() = default;

  explicit BinaryIndexedTree(int n) : n(n) { data.assign(n + 1, T()); }

  explicit BinaryIndexedTree(const vector<T> &v)
      : BinaryIndexedTree((int)v.size()) {
    build(v);
  }

  void build(const vector<T> &v) {
    assert(n == (int)v.size());
    for (int i = 1; i <= n; i++) data[i] = v[i - 1];
    for (int i = 1; i <= n; i++) {
      int j = i + (i & -i);
      if (j <= n) data[j] += data[i];
    }
  }

  void apply(int k, const T &x) {
    for (++k; k <= n; k += k & -k) data[k] += x;
  }

  T prod(int r) const {
    T ret = T();
    for (; r > 0; r -= r & -r) ret += data[r];
    return ret;
  }

  T prod(int l, int r) const { return prod(r) - prod(l); }

  int lower_bound(T x) const {
    int i = 0;
    for (int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
      if (i + k <= n && data[i + k] < x) {
        x -= data[i + k];
        i += k;
      }
    }
    return i;
  }

  int upper_bound(T x) const {
    int i = 0;
    for (int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
      if (i + k <= n && data[i + k] <= x) {
        x -= data[i + k];
        i += k;
      }
    }
    return i;
  }
};
#line 2 "other/static-rectangle-add-rectangle-sum.hpp"

template <typename T, typename C>
struct StaticRectangleAddRectangleSum {
  struct Hikari : array<C, 4> {
    Hikari &operator+=(const Hikari &p) {
      for (int i = 0; i < 4; i++) {
        this->at(i) += p.at(i);
      }
      return *this;
    }
  };

  using BIT = BinaryIndexedTree<Hikari>;

  static_assert(is_integral<T>::value,
                "template parameter T must be integral type");

  struct Rectangle {
    T l, d, r, u;
    C w;
  };

  struct Query {
    T l, d, r, u;
  };

  vector<Rectangle> rectangles;
  vector<Query> queries;

  StaticRectangleAddRectangleSum() = default;

  StaticRectangleAddRectangleSum(int n, int q) {
    rectangles.reserve(n);
    queries.reserve(q);
  }

  void add_rectangle(T l, T d, T r, T u, C w) {
    rectangles.emplace_back(Rectangle{l, d, r, u, w});
  }

  // total weight of [l, r) * [d, u) points
  void add_query(T l, T d, T r, T u) {
    queries.emplace_back(Query{l, d, r, u});
  }

  vector<C> calculate_queries() {
    int n = (int)rectangles.size();
    int q = (int)queries.size();
    vector<C> ans(q);
    if (rectangles.empty() or queries.empty()) {
      return ans;
    }
    vector<T> ys;
    ys.reserve(n + n);
    for (Rectangle &p : rectangles) {
      ys.emplace_back(p.d);
      ys.emplace_back(p.u);
    }
    sort(ys.begin(), ys.end());
    ys.erase(unique(ys.begin(), ys.end()), ys.end());

    struct Q {
      T x;
      int d, u;
      bool type;
      int idx;
    };
    vector<Q> rs, qs;
    rs.reserve(n + n);
    qs.reserve(q + q);
    for (int i = 0; i < n; i++) {
      auto &p = rectangles[i];
      int d = lower_bound(ys.begin(), ys.end(), p.d) - ys.begin();
      int u = lower_bound(ys.begin(), ys.end(), p.u) - ys.begin();
      rs.emplace_back(Q{p.l, d, u, false, i});
      rs.emplace_back(Q{p.r, d, u, true, i});
    }
    for (int i = 0; i < q; i++) {
      auto &p = queries[i];
      int d = lower_bound(ys.begin(), ys.end(), p.d) - ys.begin();
      int u = lower_bound(ys.begin(), ys.end(), p.u) - ys.begin();
      qs.emplace_back(Q{p.l, d, u, false, i});
      qs.emplace_back(Q{p.r, d, u, true, i});
    }
    sort(rs.begin(), rs.end(),
         [](const Q &a, const Q &b) { return a.x < b.x; });
    sort(qs.begin(), qs.end(),
         [](const Q &a, const Q &b) { return a.x < b.x; });
    int j = 0;
    BIT bit(ys.size());
    for (auto &query : qs) {
      while (j < n + n and rs[j].x < query.x) {
        auto &p = rectangles[rs[j].idx];
        if (rs[j].type) {
          bit.apply(rs[j].d, {-p.w * p.r * p.d, -p.w, p.w * p.d, p.w * p.r});
          bit.apply(rs[j].u, {p.w * p.r * p.u, p.w, -p.w * p.u, -p.w * p.r});
        } else {
          bit.apply(rs[j].d, {p.w * p.l * p.d, p.w, -p.w * p.d, -p.w * p.l});
          bit.apply(rs[j].u, {-p.w * p.l * p.u, -p.w, p.w * p.u, p.w * p.l});
        }
        ++j;
      }
      auto &p = queries[query.idx];
      auto uret = bit.prod(query.u);
      ans[query.idx] += uret[0];
      ans[query.idx] += uret[1] * query.x * p.u;
      ans[query.idx] += uret[2] * query.x;
      ans[query.idx] += uret[3] * p.u;
      auto dret = bit.prod(query.d);
      ans[query.idx] -= dret[0];
      ans[query.idx] -= dret[1] * query.x * p.d;
      ans[query.idx] -= dret[2] * query.x;
      ans[query.idx] -= dret[3] * p.d;
      if (not query.type) ans[query.idx] *= -1;
    }
    return ans;
  }
};
#line 6 "test/verify/yosupo-static-rectangle-add-rectangle-sum.test.cpp"

#line 2 "math/combinatorics/montgomery-mod-int.hpp"

template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
 private:
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using i64 = int64_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod_;
    for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
    return ret;
  }

  static constexpr u32 r = get_r();

  static constexpr u32 n2 = -u64(mod_) % mod_;

  static_assert(r * mod_ == 1, "invalid, r * mod != 1");
  static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");

  u32 x;

 public:
  MontgomeryModInt() : x{} {}

  MontgomeryModInt(const i64 &a)
      : x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}

  static constexpr u32 reduce(const u64 &b) {
    return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
  }

  mint &operator+=(const mint &p) {
    if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
    return *this;
  }

  mint &operator-=(const mint &p) {
    if (i32(x -= p.x) < 0) x += 2 * mod();
    return *this;
  }

  mint &operator*=(const mint &p) {
    x = reduce(u64(x) * p.x);
    return *this;
  }

  mint &operator/=(const mint &p) {
    *this *= p.inv();
    return *this;
  }

  mint operator-() const { return mint() - *this; }

  mint operator+(const mint &p) const { return mint(*this) += p; }

  mint operator-(const mint &p) const { return mint(*this) -= p; }

  mint operator*(const mint &p) const { return mint(*this) *= p; }

  mint operator/(const mint &p) const { return mint(*this) /= p; }

  bool operator==(const mint &p) const {
    return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
  }

  bool operator!=(const mint &p) const {
    return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
  }

  u32 val() const {
    u32 ret = reduce(x);
    return ret >= mod() ? ret - mod() : ret;
  }

  mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  mint inv() const { return pow(mod() - 2); }

  friend ostream &operator<<(ostream &os, const mint &p) {
    return os << p.val();
  }

  friend istream &operator>>(istream &is, mint &a) {
    i64 t;
    is >> t;
    a = mint(t);
    return is;
  }

  static constexpr u32 mod() { return mod_; }
};

template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
#line 8 "test/verify/yosupo-static-rectangle-add-rectangle-sum.test.cpp"

using mint = modint998244353;

int main() {
  int N, Q;
  cin >> N >> Q;
  StaticRectangleAddRectangleSum< int, mint > mat;
  for(int i = 0; i < N; i++) {
    int l, d, r, u, w;
    cin >> l >> d >> r >> u >> w;
    mat.add_rectangle(l, d, r, u, w);
  }
  for(int i = 0; i < Q; i++) {
    int l, d, r, u;
    cin >> l >> d >> r >> u;
    mat.add_query(l, d, r, u);
  }
  for(auto& p : mat.calculate_queries()) {
    cout << p.val() << "\n";
  }
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 5 ms 3 MB
g++ max_random_00 :heavy_check_mark: AC 506 ms 37 MB
g++ max_random_01 :heavy_check_mark: AC 505 ms 37 MB
g++ max_random_02 :heavy_check_mark: AC 505 ms 37 MB
g++ random_00 :heavy_check_mark: AC 337 ms 27 MB
g++ random_01 :heavy_check_mark: AC 374 ms 32 MB
g++ random_02 :heavy_check_mark: AC 203 ms 16 MB
g++ small_00 :heavy_check_mark: AC 5 ms 3 MB
g++ small_01 :heavy_check_mark: AC 5 ms 3 MB
g++ small_02 :heavy_check_mark: AC 5 ms 3 MB
g++ small_NQ_00 :heavy_check_mark: AC 5 ms 4 MB
g++ small_NQ_01 :heavy_check_mark: AC 5 ms 4 MB
g++ small_NQ_02 :heavy_check_mark: AC 5 ms 4 MB
clang++ example_00 :heavy_check_mark: AC 5 ms 3 MB
clang++ max_random_00 :heavy_check_mark: AC 379 ms 37 MB
clang++ max_random_01 :heavy_check_mark: AC 377 ms 37 MB
clang++ max_random_02 :heavy_check_mark: AC 374 ms 37 MB
clang++ random_00 :heavy_check_mark: AC 243 ms 27 MB
clang++ random_01 :heavy_check_mark: AC 277 ms 32 MB
clang++ random_02 :heavy_check_mark: AC 143 ms 16 MB
clang++ small_00 :heavy_check_mark: AC 5 ms 3 MB
clang++ small_01 :heavy_check_mark: AC 5 ms 3 MB
clang++ small_02 :heavy_check_mark: AC 5 ms 3 MB
clang++ small_NQ_00 :heavy_check_mark: AC 5 ms 4 MB
clang++ small_NQ_01 :heavy_check_mark: AC 5 ms 4 MB
clang++ small_NQ_02 :heavy_check_mark: AC 5 ms 4 MB
Back to top page