This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/subset_convolution
#include "../../template/template.hpp"
#include "../../math/fft/subset-convolution.hpp"
#include "../../math/combinatorics/montgomery-mod-int.hpp"
#include "../../other/scanner.hpp"
#include "../../other/printer.hpp"
using mint = modint998244353;
int main() {
Scanner in(stdin);
Printer out(stdout);
int N;
in.read(N);
vector< mint > f(1 << N), g(1 << N);
for(auto &a : f) {
int x;
in.read(x);
a = x;
}
for(auto &a : g) {
int x;
in.read(x);
a = x;
}
auto h = SubsetConvolution< mint, 20 >::multiply(f, g);
for(auto &a : h) {
out.write(a.val());
out.write(' ');
}
out.writeln();
}
#line 1 "test/verify/yosupo-subset-convolution.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/subset_convolution
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
return a > b && (a = b, true);
}
template <typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template <typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}
template <typename... Args>
decltype(auto) operator()(Args &&...args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-subset-convolution.test.cpp"
#line 1 "math/fft/subset-convolution.hpp"
/**
* @brief Subset Convolution
*/
template <typename Mint, int _s>
struct SubsetConvolution {
using fps = array<Mint, _s + 1>;
static array<int, (1 << _s)> pop_count;
static constexpr int s = _s;
SubsetConvolution() = default;
static void init() {
if (pop_count.back() == 0) {
pop_count[0] = 0;
for (int i = 1; i < (1 << s); i++) {
pop_count[i] = pop_count[i - (i & -i)] + 1;
}
}
}
static inline void add(fps &f, const fps &g, int d) {
for (int i = 0; i < d; i++) {
f[i] += g[i];
}
}
static inline void sub(fps &f, const fps &g, int d) {
for (int i = d; i <= s; i++) {
f[i] -= g[i];
}
}
static void zeta_transform(vector<fps> &F) {
const int n = (int)F.size();
assert((n & (n - 1)) == 0);
init();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; j += i << 1) {
for (int k = 0; k < i; k++) {
add(F[j + k + i], F[j + k], pop_count[j + k + i]);
}
}
}
}
static void moebius_transform(vector<fps> &F) {
const int n = (int)F.size();
assert((n & (n - 1)) == 0);
init();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; j += i << 1) {
for (int k = 0; k < i; k++) {
sub(F[j + k + i], F[j + k], pop_count[j + k + i]);
}
}
}
}
static vector<fps> lift(const vector<Mint> &f) {
const int n = (int)f.size();
init();
vector<fps> F(n);
for (int i = 0; i < n; i++) {
fill(begin(F[i]), end(F[i]), Mint());
F[i][pop_count[i]] = f[i];
}
return F;
}
static vector<Mint> unlift(const vector<fps> &F) {
const int n = (int)F.size();
init();
vector<Mint> f(n);
for (int i = 0; i < (int)F.size(); i++) {
f[i] = F[i][pop_count[i]];
}
return f;
}
static void prod(vector<fps> &F, const vector<fps> &G) {
int n = (int)F.size();
int d = __builtin_ctz(n);
for (int i = 0; i < n; i++) {
fps h{};
for (int j = 0; j <= d; j++) {
for (int k = 0; k <= d - j; k++) {
h[j + k] += F[i][j] * G[i][k];
}
}
F[i] = move(h);
}
}
static vector<Mint> multiply(const vector<Mint> &f, const vector<Mint> &g) {
auto F = lift(f), G = lift(g);
zeta_transform(F);
zeta_transform(G);
prod(F, G);
moebius_transform(F);
return unlift(F);
}
};
template <typename Mint, int s>
array<int, (1 << s)> SubsetConvolution<Mint, s>::pop_count;
#line 6 "test/verify/yosupo-subset-convolution.test.cpp"
#line 2 "math/combinatorics/montgomery-mod-int.hpp"
template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
private:
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod_;
for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod_) % mod_;
static_assert(r * mod_ == 1, "invalid, r * mod != 1");
static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
public:
MontgomeryModInt() : x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
}
mint &operator+=(const mint &p) {
if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
return *this;
}
mint &operator-=(const mint &p) {
if (i32(x -= p.x) < 0) x += 2 * mod();
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inv();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const {
return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
}
bool operator!=(const mint &p) const {
return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
}
u32 val() const {
u32 ret = reduce(x);
return ret >= mod() ? ret - mod() : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inv() const { return pow(mod() - 2); }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.val();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static constexpr u32 mod() { return mod_; }
};
template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
#line 8 "test/verify/yosupo-subset-convolution.test.cpp"
#line 1 "other/scanner.hpp"
/**
* @brief Scanner(高速入力)
*/
struct Scanner {
public:
explicit Scanner(FILE *fp) : fp(fp) {}
template <typename T, typename... E>
void read(T &t, E &...e) {
read_single(t);
read(e...);
}
private:
static constexpr size_t line_size = 1 << 16;
static constexpr size_t int_digits = 20;
char line[line_size + 1] = {};
FILE *fp = nullptr;
char *st = line;
char *ed = line;
void read() {}
static inline bool is_space(char c) { return c <= ' '; }
void reread() {
ptrdiff_t len = ed - st;
memmove(line, st, len);
char *tmp = line + len;
ed = tmp + fread(tmp, 1, line_size - len, fp);
*ed = 0;
st = line;
}
void skip_space() {
while (true) {
if (st == ed) reread();
while (*st && is_space(*st)) ++st;
if (st != ed) return;
}
}
template <typename T, enable_if_t<is_integral<T>::value, int> = 0>
void read_single(T &s) {
skip_space();
if (st + int_digits >= ed) reread();
bool neg = false;
if (is_signed<T>::value && *st == '-') {
neg = true;
++st;
}
typename make_unsigned<T>::type y = *st++ - '0';
while (*st >= '0') {
y = 10 * y + *st++ - '0';
}
s = (neg ? -y : y);
}
template <typename T, enable_if_t<is_same<T, string>::value, int> = 0>
void read_single(T &s) {
s = "";
skip_space();
while (true) {
char *base = st;
while (*st && !is_space(*st)) ++st;
s += string(base, st);
if (st != ed) return;
reread();
}
}
template <typename T>
void read_single(vector<T> &s) {
for (auto &d : s) read(d);
}
};
#line 1 "other/printer.hpp"
/**
* @brief Printer(高速出力)
*/
struct Printer {
public:
explicit Printer(FILE *fp) : fp(fp) {}
~Printer() { flush(); }
template <bool f = false, typename T, typename... E>
void write(const T &t, const E &...e) {
if (f) write_single(' ');
write_single(t);
write<true>(e...);
}
template <typename... T>
void writeln(const T &...t) {
write(t...);
write_single('\n');
}
void flush() {
fwrite(line, 1, st - line, fp);
st = line;
}
private:
FILE *fp = nullptr;
static constexpr size_t line_size = 1 << 16;
static constexpr size_t int_digits = 20;
char line[line_size + 1] = {};
char *st = line;
template <bool f = false>
void write() {}
void write_single(const char &t) {
if (st + 1 >= line + line_size) flush();
*st++ = t;
}
template <typename T, enable_if_t<is_integral<T>::value, int> = 0>
void write_single(T s) {
if (st + int_digits >= line + line_size) flush();
st += to_chars(st, st + int_digits, s).ptr - st;
}
void write_single(const string &s) {
for (auto &c : s) write_single(c);
}
void write_single(const char *s) {
while (*s != 0) write_single(*s++);
}
template <typename T>
void write_single(const vector<T> &s) {
for (size_t i = 0; i < s.size(); i++) {
if (i) write_single(' ');
write_single(s[i]);
}
}
};
#line 11 "test/verify/yosupo-subset-convolution.test.cpp"
using mint = modint998244353;
int main() {
Scanner in(stdin);
Printer out(stdout);
int N;
in.read(N);
vector< mint > f(1 << N), g(1 << N);
for(auto &a : f) {
int x;
in.read(x);
a = x;
}
for(auto &a : g) {
int x;
in.read(x);
a = x;
}
auto h = SubsetConvolution< mint, 20 >::multiply(f, g);
for(auto &a : h) {
out.write(a.val());
out.write(' ');
}
out.writeln();
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | example_00 |
![]() |
7 ms | 8 MB |
g++ | hack01_00 |
![]() |
804 ms | 192 MB |
g++ | max_random_00 |
![]() |
817 ms | 192 MB |
g++ | max_random_01 |
![]() |
816 ms | 192 MB |
g++ | max_random_02 |
![]() |
815 ms | 192 MB |
g++ | random_00 |
![]() |
813 ms | 192 MB |
g++ | random_01 |
![]() |
7 ms | 8 MB |
g++ | random_02 |
![]() |
7 ms | 8 MB |
g++ | small_00 |
![]() |
7 ms | 8 MB |
g++ | small_01 |
![]() |
7 ms | 8 MB |
g++ | small_02 |
![]() |
7 ms | 8 MB |
clang++ | example_00 |
![]() |
7 ms | 8 MB |
clang++ | hack01_00 |
![]() |
534 ms | 192 MB |
clang++ | max_random_00 |
![]() |
546 ms | 192 MB |
clang++ | max_random_01 |
![]() |
548 ms | 192 MB |
clang++ | max_random_02 |
![]() |
547 ms | 192 MB |
clang++ | random_00 |
![]() |
545 ms | 192 MB |
clang++ | random_01 |
![]() |
8 ms | 8 MB |
clang++ | random_02 |
![]() |
7 ms | 8 MB |
clang++ | small_00 |
![]() |
6 ms | 8 MB |
clang++ | small_01 |
![]() |
6 ms | 8 MB |
clang++ | small_02 |
![]() |
6 ms | 8 MB |