Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:heavy_check_mark: test/verify/yukicoder-3046.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/3046

#include "../../template/template.hpp"

#include "../../math/combinatorics/montgomery-mod-int.hpp"
#include "../../math/fps/formal-power-series.hpp"

using mint = modint1000000007;

int main() {
  int K, N;
  cin >> K >> N;
  FPS< mint > X(K + 1);
  X[0] = 1;
  for(int i = 0; i < N; i++) {
    int x;
    cin >> x;
    if(x <= K) X[x] = -1;
  }
  cout << X.inv()[K] << endl;
}
#line 1 "test/verify/yukicoder-3046.test.cpp"
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/3046

#line 1 "template/template.hpp"
#include <bits/stdc++.h>

using namespace std;

using int64 = long long;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
  os << p.first << " " << p.second;
  return os;
}

template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  for (int i = 0; i < (int)v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (T &in : v) is >> in;
  return is;
}

template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
  return a < b && (a = b, true);
}

template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
  return a > b && (a = b, true);
}

template <typename T = int64>
vector<T> make_v(size_t a) {
  return vector<T>(a);
}

template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
  return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}

template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
  t = v;
}

template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
  for (auto &e : t) fill_v(e, v);
}

template <typename F>
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward<F>(f)) {}

  template <typename... Args>
  decltype(auto) operator()(Args &&...args) const {
    return F::operator()(*this, forward<Args>(args)...);
  }
};

template <typename F>
inline decltype(auto) MFP(F &&f) {
  return FixPoint<F>{forward<F>(f)};
}
#line 4 "test/verify/yukicoder-3046.test.cpp"

#line 2 "math/combinatorics/montgomery-mod-int.hpp"

template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
 private:
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using i64 = int64_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod_;
    for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
    return ret;
  }

  static constexpr u32 r = get_r();

  static constexpr u32 n2 = -u64(mod_) % mod_;

  static_assert(r * mod_ == 1, "invalid, r * mod != 1");
  static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");

  u32 x;

 public:
  MontgomeryModInt() : x{} {}

  MontgomeryModInt(const i64 &a)
      : x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}

  static constexpr u32 reduce(const u64 &b) {
    return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
  }

  mint &operator+=(const mint &p) {
    if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
    return *this;
  }

  mint &operator-=(const mint &p) {
    if (i32(x -= p.x) < 0) x += 2 * mod();
    return *this;
  }

  mint &operator*=(const mint &p) {
    x = reduce(u64(x) * p.x);
    return *this;
  }

  mint &operator/=(const mint &p) {
    *this *= p.inv();
    return *this;
  }

  mint operator-() const { return mint() - *this; }

  mint operator+(const mint &p) const { return mint(*this) += p; }

  mint operator-(const mint &p) const { return mint(*this) -= p; }

  mint operator*(const mint &p) const { return mint(*this) *= p; }

  mint operator/(const mint &p) const { return mint(*this) /= p; }

  bool operator==(const mint &p) const {
    return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
  }

  bool operator!=(const mint &p) const {
    return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
  }

  u32 val() const {
    u32 ret = reduce(x);
    return ret >= mod() ? ret - mod() : ret;
  }

  mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  mint inv() const { return pow(mod() - 2); }

  friend ostream &operator<<(ostream &os, const mint &p) {
    return os << p.val();
  }

  friend istream &operator>>(istream &is, mint &a) {
    i64 t;
    is >> t;
    a = mint(t);
    return is;
  }

  static constexpr u32 mod() { return mod_; }
};

template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
#line 2 "math/fps/formal-power-series.hpp"

#line 1 "math/fft/fast-fourier-transform.hpp"
namespace FastFourierTransform {
using real = double;

struct C {
  real x, y;

  C() : x(0), y(0) {}

  C(real x, real y) : x(x), y(y) {}

  inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }

  inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }

  inline C operator*(const C &c) const {
    return C(x * c.x - y * c.y, x * c.y + y * c.x);
  }

  inline C conj() const { return C(x, -y); }
};

const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};

void ensure_base(int nbase) {
  if (nbase <= base) return;
  rev.resize(1 << nbase);
  rts.resize(1 << nbase);
  for (int i = 0; i < (1 << nbase); i++) {
    rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
  }
  while (base < nbase) {
    real angle = PI * 2.0 / (1 << (base + 1));
    for (int i = 1 << (base - 1); i < (1 << base); i++) {
      rts[i << 1] = rts[i];
      real angle_i = angle * (2 * i + 1 - (1 << base));
      rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
    }
    ++base;
  }
}

void fft(vector<C> &a, int n) {
  assert((n & (n - 1)) == 0);
  int zeros = __builtin_ctz(n);
  ensure_base(zeros);
  int shift = base - zeros;
  for (int i = 0; i < n; i++) {
    if (i < (rev[i] >> shift)) {
      swap(a[i], a[rev[i] >> shift]);
    }
  }
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < n; i += 2 * k) {
      for (int j = 0; j < k; j++) {
        C z = a[i + j + k] * rts[j + k];
        a[i + j + k] = a[i + j] - z;
        a[i + j] = a[i + j] + z;
      }
    }
  }
}

vector<int64_t> multiply(const vector<int> &a, const vector<int> &b) {
  int need = (int)a.size() + (int)b.size() - 1;
  int nbase = 1;
  while ((1 << nbase) < need) nbase++;
  ensure_base(nbase);
  int sz = 1 << nbase;
  vector<C> fa(sz);
  for (int i = 0; i < sz; i++) {
    int x = (i < (int)a.size() ? a[i] : 0);
    int y = (i < (int)b.size() ? b[i] : 0);
    fa[i] = C(x, y);
  }
  fft(fa, sz);
  C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
  for (int i = 0; i <= (sz >> 1); i++) {
    int j = (sz - i) & (sz - 1);
    C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
    fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
    fa[i] = z;
  }
  for (int i = 0; i < (sz >> 1); i++) {
    C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
    C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
    fa[i] = A0 + A1 * s;
  }
  fft(fa, sz >> 1);
  vector<int64_t> ret(need);
  for (int i = 0; i < need; i++) {
    ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
  }
  return ret;
}
};  // namespace FastFourierTransform
#line 2 "math/fft/arbitrary-mod-convolution.hpp"

/*
 * @brief Arbitrary Mod Convolution(任意mod畳み込み)
 */
template <typename T>
struct ArbitraryModConvolution {
  using real = FastFourierTransform::real;
  using C = FastFourierTransform::C;

  ArbitraryModConvolution() = default;

  static vector<T> multiply(const vector<T> &a, const vector<T> &b,
                            int need = -1) {
    if (need == -1) need = a.size() + b.size() - 1;
    int nbase = 0;
    while ((1 << nbase) < need) nbase++;
    FastFourierTransform::ensure_base(nbase);
    int sz = 1 << nbase;
    vector<C> fa(sz);
    for (int i = 0; i < a.size(); i++) {
      fa[i] = C(a[i].val() & ((1 << 15) - 1), a[i].val() >> 15);
    }
    fft(fa, sz);
    vector<C> fb(sz);
    if (a == b) {
      fb = fa;
    } else {
      for (int i = 0; i < b.size(); i++) {
        fb[i] = C(b[i].val() & ((1 << 15) - 1), b[i].val() >> 15);
      }
      fft(fb, sz);
    }
    real ratio = 0.25 / sz;
    C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
    for (int i = 0; i <= (sz >> 1); i++) {
      int j = (sz - i) & (sz - 1);
      C a1 = (fa[i] + fa[j].conj());
      C a2 = (fa[i] - fa[j].conj()) * r2;
      C b1 = (fb[i] + fb[j].conj()) * r3;
      C b2 = (fb[i] - fb[j].conj()) * r4;
      if (i != j) {
        C c1 = (fa[j] + fa[i].conj());
        C c2 = (fa[j] - fa[i].conj()) * r2;
        C d1 = (fb[j] + fb[i].conj()) * r3;
        C d2 = (fb[j] - fb[i].conj()) * r4;
        fa[i] = c1 * d1 + c2 * d2 * r5;
        fb[i] = c1 * d2 + c2 * d1;
      }
      fa[j] = a1 * b1 + a2 * b2 * r5;
      fb[j] = a1 * b2 + a2 * b1;
    }
    fft(fa, sz);
    fft(fb, sz);
    vector<T> ret(need);
    for (int i = 0; i < need; i++) {
      int64_t aa = llround(fa[i].x);
      int64_t bb = llround(fb[i].x);
      int64_t cc = llround(fa[i].y);
      aa = T(aa).val(), bb = T(bb).val(), cc = T(cc).val();
      ret[i] = aa + (bb << 15) + (cc << 30);
    }
    return ret;
  }
};
#line 4 "math/fps/formal-power-series.hpp"

/**
 * @brief Formal Power Series(形式的冪級数)
 */
template <typename T>
struct FormalPowerSeries : vector<T> {
  using vector<T>::vector;
  using P = FormalPowerSeries;
  using Conv = ArbitraryModConvolution<T>;

  P pre(int deg) const {
    return P(begin(*this), begin(*this) + min((int)this->size(), deg));
  }

  P rev(int deg = -1) const {
    P ret(*this);
    if (deg != -1) ret.resize(deg, T(0));
    reverse(begin(ret), end(ret));
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == T(0)) this->pop_back();
  }

  P operator+(const P &r) const { return P(*this) += r; }

  P operator+(const T &v) const { return P(*this) += v; }

  P operator-(const P &r) const { return P(*this) -= r; }

  P operator-(const T &v) const { return P(*this) -= v; }

  P operator*(const P &r) const { return P(*this) *= r; }

  P operator*(const T &v) const { return P(*this) *= v; }

  P operator/(const P &r) const { return P(*this) /= r; }

  P operator%(const P &r) const { return P(*this) %= r; }

  P &operator+=(const P &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  P &operator-=(const P &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  // https://judge.yosupo.jp/problem/convolution_mod
  P &operator*=(const P &r) {
    if (this->empty() || r.empty()) {
      this->clear();
      return *this;
    }
    auto ret = Conv::multiply(*this, r);
    return *this = {begin(ret), end(ret)};
  }

  P &operator/=(const P &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
  }

  P &operator%=(const P &r) { return *this -= *this / r * r; }

  // https://judge.yosupo.jp/problem/division_of_polynomials
  pair<P, P> div_mod(const P &r) {
    P q = *this / r;
    return make_pair(q, *this - q * r);
  }

  P operator-() const {
    P ret(this->size());
    for (int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  P &operator+=(const T &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  P &operator-=(const T &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  P &operator*=(const T &v) {
    for (int i = 0; i < this->size(); i++) (*this)[i] *= v;
    return *this;
  }

  P dot(P r) const {
    P ret(min(this->size(), r.size()));
    for (int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  P operator>>(int sz) const {
    if (this->size() <= sz) return {};
    P ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  P operator<<(int sz) const {
    P ret(*this);
    ret.insert(ret.begin(), sz, T(0));
    return ret;
  }

  T operator()(T x) const {
    T r = 0, w = 1;
    for (auto &v : *this) {
      r += w * v;
      w *= x;
    }
    return r;
  }

  P diff() const {
    const int n = (int)this->size();
    P ret(max(0, n - 1));
    for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
    return ret;
  }

  P integral() const {
    const int n = (int)this->size();
    P ret(n + 1);
    ret[0] = T(0);
    for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
    return ret;
  }

  // https://judge.yosupo.jp/problem/inv_of_formal_power_series
  // F(0) must not be 0
  P inv(int deg = -1) const {
    assert(((*this)[0]) != T(0));
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    P ret({T(1) / (*this)[0]});
    for (int i = 1; i < deg; i <<= 1) {
      ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
    }
    return ret.pre(deg);
  }

  // https://judge.yosupo.jp/problem/log_of_formal_power_series
  // F(0) must be 1
  P log(int deg = -1) const {
    assert((*this)[0] == T(1));
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  // https://judge.yosupo.jp/problem/sqrt_of_formal_power_series
  P sqrt(
      int deg = -1,
      const function<T(T)> &get_sqrt = [](T) { return T(1); }) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if ((*this)[0] == T(0)) {
      for (int i = 1; i < n; i++) {
        if ((*this)[i] != T(0)) {
          if (i & 1) return {};
          if (deg - i / 2 <= 0) break;
          auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt);
          if (ret.empty()) return {};
          ret = ret << (i / 2);
          if (ret.size() < deg) ret.resize(deg, T(0));
          return ret;
        }
      }
      return P(deg, 0);
    }
    auto sqr = T(get_sqrt((*this)[0]));
    if (sqr * sqr != (*this)[0]) return {};
    P ret{sqr};
    T inv2 = T(1) / T(2);
    for (int i = 1; i < deg; i <<= 1) {
      ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
    }
    return ret.pre(deg);
  }

  P sqrt(const function<T(T)> &get_sqrt, int deg = -1) const {
    return sqrt(deg, get_sqrt);
  }

  // https://judge.yosupo.jp/problem/exp_of_formal_power_series
  // F(0) must be 0
  P exp(int deg = -1) const {
    if (deg == -1) deg = this->size();
    assert((*this)[0] == T(0));
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    P ret({T(1)});
    for (int i = 1; i < deg; i <<= 1) {
      ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
    }
    return ret.pre(deg);
  }

  // https://judge.yosupo.jp/problem/pow_of_formal_power_series
  P pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if (k == 0) {
      P ret(deg, T(0));
      ret[0] = T(1);
      return ret;
    }
    for (int i = 0; i < n; i++) {
      if (i * k > deg) return P(deg, T(0));
      if ((*this)[i] != T(0)) {
        T rev = T(1) / (*this)[i];
        P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
        ret = (ret << (i * k)).pre(deg);
        if (ret.size() < deg) ret.resize(deg, T(0));
        return ret;
      }
    }
    return *this;
  }

  // https://yukicoder.me/problems/no/215
  P mod_pow(int64_t k, P g) const {
    P modinv = g.rev().inv();
    auto get_div = [&](P base) {
      if (base.size() < g.size()) {
        base.clear();
        return base;
      }
      int n = base.size() - g.size() + 1;
      return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
    };
    P x(*this), ret{1};
    while (k > 0) {
      if (k & 1) {
        ret *= x;
        ret -= get_div(ret) * g;
        ret.shrink();
      }
      x *= x;
      x -= get_div(x) * g;
      x.shrink();
      k >>= 1;
    }
    return ret;
  }

  // https://judge.yosupo.jp/problem/polynomial_taylor_shift
  P taylor_shift(T c) const {
    int n = (int)this->size();
    vector<T> fact(n), rfact(n);
    fact[0] = rfact[0] = T(1);
    for (int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);
    rfact[n - 1] = T(1) / fact[n - 1];
    for (int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);
    P p(*this);
    for (int i = 0; i < n; i++) p[i] *= fact[i];
    p = p.rev();
    P bs(n, T(1));
    for (int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
    p = (p * bs).pre(n);
    p = p.rev();
    for (int i = 0; i < n; i++) p[i] *= rfact[i];
    return p;
  }
};

template <typename Mint>
using FPS = FormalPowerSeries<Mint>;
#line 7 "test/verify/yukicoder-3046.test.cpp"

using mint = modint1000000007;

int main() {
  int K, N;
  cin >> K >> N;
  FPS< mint > X(K + 1);
  X[0] = 1;
  for(int i = 0; i < N; i++) {
    int x;
    cin >> x;
    if(x <= K) X[x] = -1;
  }
  cout << X.inv()[K] << endl;
}

Test cases

Env Name Status Elapsed Memory
g++ 0s1.txt :heavy_check_mark: AC 6 ms 4 MB
g++ 0s2.txt :heavy_check_mark: AC 6 ms 4 MB
g++ 0s3.txt :heavy_check_mark: AC 6 ms 4 MB
g++ 0s4.txt :heavy_check_mark: AC 102 ms 21 MB
g++ 2c1.txt :heavy_check_mark: AC 7 ms 4 MB
g++ 5l1.txt :heavy_check_mark: AC 103 ms 20 MB
g++ 5l2.txt :heavy_check_mark: AC 109 ms 20 MB
g++ 5l3.txt :heavy_check_mark: AC 107 ms 20 MB
g++ 5l7.txt :heavy_check_mark: AC 110 ms 21 MB
clang++ 0s1.txt :heavy_check_mark: AC 6 ms 4 MB
clang++ 0s2.txt :heavy_check_mark: AC 6 ms 4 MB
clang++ 0s3.txt :heavy_check_mark: AC 6 ms 4 MB
clang++ 0s4.txt :heavy_check_mark: AC 103 ms 21 MB
clang++ 2c1.txt :heavy_check_mark: AC 7 ms 4 MB
clang++ 5l1.txt :heavy_check_mark: AC 103 ms 21 MB
clang++ 5l2.txt :heavy_check_mark: AC 110 ms 21 MB
clang++ 5l3.txt :heavy_check_mark: AC 107 ms 21 MB
clang++ 5l7.txt :heavy_check_mark: AC 109 ms 21 MB
Back to top page