This documentation is automatically generated by online-judge-tools/verification-helper
#include "geometry/cross_point_cc.hpp"
#include "base.hpp"
#include "point.hpp"
#include "circle.hpp"
namespace geometry {
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E
Points cross_point_cc(const Circle &c1, const Circle &c2) {
Real d = abs(c1.p - c2.p), r = c1.r + c2.r;
if(sign(d - r) > 0 or sign(d + c1.r - c2.r) < 0) return {};
Real a = acos((norm(c1.r) - norm(c2.r) + norm(d)) / (2 * c1.r * d));
Real t = arg(c2.p - c1.p);
Point p = c1.p + polar(c1.r, t + a);
Point q = c1.p + polar(c1.r, t - a);
if(equals(real(p), real(q)) && equals(imag(p), imag(q))) return {p};
return {p, q};
}
}
#line 2 "geometry/base.hpp"
namespace geometry {
using Real = double;
const Real EPS = 1e-8;
const Real PI = acos(static_cast< Real >(-1));
enum {
OUT, ON, IN
};
inline int sign(const Real &r) {
return r <= -EPS ? -1 : r >= EPS ? 1 : 0;
}
inline bool equals(const Real &a, const Real &b) {
return sign(a - b) == 0;
}
}
#line 3 "geometry/point.hpp"
namespace geometry {
using Point = complex< Real >;
istream &operator>>(istream &is, Point &p) {
Real a, b;
is >> a >> b;
p = Point(a, b);
return is;
}
ostream &operator<<(ostream &os, const Point &p) {
return os << real(p) << " " << imag(p);
}
Point operator*(const Point &p, const Real &d) {
return Point(real(p) * d, imag(p) * d);
}
// rotate point p counterclockwise by theta rad
Point rotate(Real theta, const Point &p) {
return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p));
}
Real cross(const Point &a, const Point &b) {
return real(a) * imag(b) - imag(a) * real(b);
}
Real dot(const Point &a, const Point &b) {
return real(a) * real(b) + imag(a) * imag(b);
}
bool compare_x(const Point &a, const Point &b) {
return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b);
}
bool compare_y(const Point &a, const Point &b) {
return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b);
}
using Points = vector< Point >;
}
#line 3 "geometry/circle.hpp"
namespace geometry {
struct Circle {
Point p;
Real r{};
Circle() = default;
Circle(const Point &p, const Real &r) : p(p), r(r) {}
};
using Circles = vector< Circle >;
}
#line 4 "geometry/cross_point_cc.hpp"
namespace geometry {
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E
Points cross_point_cc(const Circle &c1, const Circle &c2) {
Real d = abs(c1.p - c2.p), r = c1.r + c2.r;
if(sign(d - r) > 0 or sign(d + c1.r - c2.r) < 0) return {};
Real a = acos((norm(c1.r) - norm(c2.r) + norm(d)) / (2 * c1.r * d));
Real t = arg(c2.p - c1.p);
Point p = c1.p + polar(c1.r, t + a);
Point q = c1.p + polar(c1.r, t - a);
if(equals(real(p), real(q)) && equals(imag(p), imag(q))) return {p};
return {p, q};
}
}