This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E"
#define ERROR 0.000001
#include "../../template/template.hpp"
#include "../../geometry/cross_point_cc.hpp"
using namespace geometry;
int main() {
Circle x, y;
cin >> x.p >> x.r >> y.p >> y.r;
auto ret = cross_point_cc(x, y);
if(ret.size() == 1) ret.emplace_back(ret[0]);
if(!compare_x(ret[0], ret[1])) swap(ret[0], ret[1]);
cout << ret[0] << " " << ret[1] << "\n";
}
#line 1 "test/verify/aoj-cgl-7-e.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E"
#define ERROR 0.000001
#line 1 "template/template.hpp"
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
explicit FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
#line 5 "test/verify/aoj-cgl-7-e.test.cpp"
#line 2 "geometry/base.hpp"
namespace geometry {
using Real = double;
const Real EPS = 1e-8;
const Real PI = acos(static_cast< Real >(-1));
enum {
OUT, ON, IN
};
inline int sign(const Real &r) {
return r <= -EPS ? -1 : r >= EPS ? 1 : 0;
}
inline bool equals(const Real &a, const Real &b) {
return sign(a - b) == 0;
}
}
#line 3 "geometry/point.hpp"
namespace geometry {
using Point = complex< Real >;
istream &operator>>(istream &is, Point &p) {
Real a, b;
is >> a >> b;
p = Point(a, b);
return is;
}
ostream &operator<<(ostream &os, const Point &p) {
return os << real(p) << " " << imag(p);
}
Point operator*(const Point &p, const Real &d) {
return Point(real(p) * d, imag(p) * d);
}
// rotate point p counterclockwise by theta rad
Point rotate(Real theta, const Point &p) {
return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p));
}
Real cross(const Point &a, const Point &b) {
return real(a) * imag(b) - imag(a) * real(b);
}
Real dot(const Point &a, const Point &b) {
return real(a) * real(b) + imag(a) * imag(b);
}
bool compare_x(const Point &a, const Point &b) {
return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b);
}
bool compare_y(const Point &a, const Point &b) {
return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b);
}
using Points = vector< Point >;
}
#line 3 "geometry/circle.hpp"
namespace geometry {
struct Circle {
Point p;
Real r{};
Circle() = default;
Circle(const Point &p, const Real &r) : p(p), r(r) {}
};
using Circles = vector< Circle >;
}
#line 4 "geometry/cross_point_cc.hpp"
namespace geometry {
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E
Points cross_point_cc(const Circle &c1, const Circle &c2) {
Real d = abs(c1.p - c2.p), r = c1.r + c2.r;
if(sign(d - r) > 0 or sign(d + c1.r - c2.r) < 0) return {};
Real a = acos((norm(c1.r) - norm(c2.r) + norm(d)) / (2 * c1.r * d));
Real t = arg(c2.p - c1.p);
Point p = c1.p + polar(c1.r, t + a);
Point q = c1.p + polar(c1.r, t - a);
if(equals(real(p), real(q)) && equals(imag(p), imag(q))) return {p};
return {p, q};
}
}
#line 7 "test/verify/aoj-cgl-7-e.test.cpp"
using namespace geometry;
int main() {
Circle x, y;
cin >> x.p >> x.r >> y.p >> y.r;
auto ret = cross_point_cc(x, y);
if(ret.size() == 1) ret.emplace_back(ret[0]);
if(!compare_x(ret[0], ret[1])) swap(ret[0], ret[1]);
cout << ret[0] << " " << ret[1] << "\n";
}