This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/others/cycle-detection.hpp"
有向グラフが与えられたとき, 辺素なサイクルを $1$ つみつける.
適当な頂点から DFS すると見つけられる.
build()
: 辺素なサイクルを $1$ つ見つけて返す. ただし, 見つからなかったとき空列を返す.$O(E + V)$
#pragma once
#include "../graph-template.hpp"
/**
* @brief Cycle Detection(閉路検出)
*
*/
template <typename T = int>
struct CycleDetection : Graph<T> {
using Graph<T>::Graph;
using Graph<T>::g;
vector<int> used;
Edges<T> pre, cycle;
bool dfs(int idx) {
used[idx] = 1;
for (auto &e : g[idx]) {
if (used[e] == 0) {
pre[e] = e;
if (dfs(e)) return true;
} else if (used[e] == 1) {
int cur = idx;
while (cur != e) {
cycle.emplace_back(pre[cur]);
cur = pre[cur].from;
}
cycle.emplace_back(e);
return true;
}
}
used[idx] = 2;
return false;
}
Edges<T> build() {
used.assign(g.size(), 0);
pre.resize(g.size());
for (int i = 0; i < (int)g.size(); i++) {
if (used[i] == 0 && dfs(i)) {
reverse(begin(cycle), end(cycle));
return cycle;
}
}
return {};
}
};
#line 2 "graph/others/cycle-detection.hpp"
#line 2 "graph/graph-template.hpp"
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 4 "graph/others/cycle-detection.hpp"
/**
* @brief Cycle Detection(閉路検出)
*
*/
template <typename T = int>
struct CycleDetection : Graph<T> {
using Graph<T>::Graph;
using Graph<T>::g;
vector<int> used;
Edges<T> pre, cycle;
bool dfs(int idx) {
used[idx] = 1;
for (auto &e : g[idx]) {
if (used[e] == 0) {
pre[e] = e;
if (dfs(e)) return true;
} else if (used[e] == 1) {
int cur = idx;
while (cur != e) {
cycle.emplace_back(pre[cur]);
cur = pre[cur].from;
}
cycle.emplace_back(e);
return true;
}
}
used[idx] = 2;
return false;
}
Edges<T> build() {
used.assign(g.size(), 0);
pre.resize(g.size());
for (int i = 0; i < (int)g.size(); i++) {
if (used[i] == 0 && dfs(i)) {
reverse(begin(cycle), end(cycle));
return cycle;
}
}
return {};
}
};