This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/others/dominator-tree.hpp"
有向グラフが与えられたとき, 頂点 root
を根とする Dominator tree を求める.
もとの有向グラフで, 頂点 root
からある頂点 i
へ向かうパスを考える. Dominator tree 上の頂点 root
から i
までのパス上にある頂点は, 頂点 i
へ到達するために必ず通る必要のある頂点である(雰囲気的には関節点の有向グラフ版). 特に頂点 i
の親は直接支配節 idom(i)
と呼び, 必ず通る必要のある頂点のうち最も w
に近い頂点を指す.
build(root)
: 頂点 root
を根とする Dominator tree を返す. 各要素にはその要素の親の idx が格納される. ただし root
には root
が格納される. 頂点 root
からその頂点に到達できない場合 -1
.$O(E \log V)$
#pragma once
#include "../graph-template.hpp"
/**
* @brief Dominator Tree
*
* @see http://sigma425.hatenablog.com/entry/2015/12/25/224053
*/
template <typename T = int>
struct DominatorTree : Graph<T> {
public:
using Graph<T>::Graph;
using Graph<T>::g;
void build(int root) {
rg = Graph<T>(g.size());
par.assign(g.size(), 0);
idom.assign(g.size(), -1);
semi.assign(g.size(), -1);
ord.reserve(g.size());
UnionFind uf(semi);
const int N = (int)g.size();
dfs(root);
for (int i = 0; i < N; i++) {
for (auto &to : g[i]) {
if (~semi[i]) rg.add_directed_edge(to, i);
}
}
vector<vector<int> > bucket(N);
vector<int> U(N);
for (int i = (int)ord.size() - 1; i >= 0; i--) {
int x = ord[i];
for (int v : rg[x]) {
v = uf.eval(v);
if (semi[x] > semi[v]) semi[x] = semi[v];
}
bucket[ord[semi[x]]].emplace_back(x);
for (int v : bucket[par[x]]) U[v] = uf.eval(v);
bucket[par[x]].clear();
uf.link(par[x], x);
}
for (int i = 1; i < (int)ord.size(); i++) {
int x = ord[i], u = U[x];
idom[x] = semi[x] == semi[u] ? semi[x] : idom[u];
}
for (int i = 1; i < (int)ord.size(); i++) {
int x = ord[i];
idom[x] = ord[idom[x]];
}
idom[root] = root;
}
int operator[](const int &k) const { return idom[k]; }
private:
Graph<T> rg;
struct UnionFind {
const vector<int> ;
vector<int> par, m;
explicit UnionFind(const vector<int> &semi)
: semi(semi), par(semi.size()), m(semi.size()) {
iota(begin(par), end(par), 0);
iota(begin(m), end(m), 0);
}
int find(int v) {
if (par[v] == v) return v;
int r = find(par[v]);
if (semi[m[v]] > semi[m[par[v]]]) m[v] = m[par[v]];
return par[v] = r;
}
int eval(int v) {
find(v);
return m[v];
}
void link(int p, int c) { par[c] = p; }
};
vector<int> ord, par;
vector<int> idom, semi;
void dfs(int idx) {
semi[idx] = (int)ord.size();
ord.emplace_back(idx);
for (auto &to : g[idx]) {
if (~semi[to]) continue;
dfs(to);
par[to] = idx;
}
}
};
#line 2 "graph/others/dominator-tree.hpp"
#line 2 "graph/graph-template.hpp"
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 4 "graph/others/dominator-tree.hpp"
/**
* @brief Dominator Tree
*
* @see http://sigma425.hatenablog.com/entry/2015/12/25/224053
*/
template <typename T = int>
struct DominatorTree : Graph<T> {
public:
using Graph<T>::Graph;
using Graph<T>::g;
void build(int root) {
rg = Graph<T>(g.size());
par.assign(g.size(), 0);
idom.assign(g.size(), -1);
semi.assign(g.size(), -1);
ord.reserve(g.size());
UnionFind uf(semi);
const int N = (int)g.size();
dfs(root);
for (int i = 0; i < N; i++) {
for (auto &to : g[i]) {
if (~semi[i]) rg.add_directed_edge(to, i);
}
}
vector<vector<int> > bucket(N);
vector<int> U(N);
for (int i = (int)ord.size() - 1; i >= 0; i--) {
int x = ord[i];
for (int v : rg[x]) {
v = uf.eval(v);
if (semi[x] > semi[v]) semi[x] = semi[v];
}
bucket[ord[semi[x]]].emplace_back(x);
for (int v : bucket[par[x]]) U[v] = uf.eval(v);
bucket[par[x]].clear();
uf.link(par[x], x);
}
for (int i = 1; i < (int)ord.size(); i++) {
int x = ord[i], u = U[x];
idom[x] = semi[x] == semi[u] ? semi[x] : idom[u];
}
for (int i = 1; i < (int)ord.size(); i++) {
int x = ord[i];
idom[x] = ord[idom[x]];
}
idom[root] = root;
}
int operator[](const int &k) const { return idom[k]; }
private:
Graph<T> rg;
struct UnionFind {
const vector<int> ;
vector<int> par, m;
explicit UnionFind(const vector<int> &semi)
: semi(semi), par(semi.size()), m(semi.size()) {
iota(begin(par), end(par), 0);
iota(begin(m), end(m), 0);
}
int find(int v) {
if (par[v] == v) return v;
int r = find(par[v]);
if (semi[m[v]] > semi[m[par[v]]]) m[v] = m[par[v]];
return par[v] = r;
}
int eval(int v) {
find(v);
return m[v];
}
void link(int p, int c) { par[c] = p; }
};
vector<int> ord, par;
vector<int> idom, semi;
void dfs(int idx) {
semi[idx] = (int)ord.size();
ord.emplace_back(idx);
for (auto &to : g[idx]) {
if (~semi[to]) continue;
dfs(to);
par[to] = idx;
}
}
};