This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/tree/tree-isomorphism.hpp"
#pragma once
#include "../graph-template.hpp"
#include "./centroid.hpp"
/**
* @brief Tree-Isomorphism(木の同型性判定)
*/
template <typename T>
bool tree_isomorphism(const Graph<T> &a, const Graph<T> &b) {
if (a.size() != b.size()) return false;
const int N = (int)a.size();
using pvi = pair<vector<int>, vector<int> >;
auto get_uku = [&](const Graph<T> &t, int e) {
stack<pair<int, int> > st;
st.emplace(e, -1);
vector<int> dep(N, -1), par(N);
while (!st.empty()) {
auto p = st.top();
if (dep[p.first] == -1) {
dep[p.first] = p.second == -1 ? 0 : dep[p.second] + 1;
for (auto &to : t[p.first])
if (to != p.second) st.emplace(to, p.first);
} else {
par[p.first] = p.second;
st.pop();
}
}
return make_pair(dep, par);
};
auto solve = [&](const pvi &latte, const pvi &malta) {
int d = *max_element(begin(latte.first), end(latte.first));
if (d != *max_element(begin(malta.first), end(malta.first))) return false;
vector<vector<int> > latte_d(d + 1), malta_d(d + 1), latte_key(N),
malta_key(N);
for (int i = 0; i < N; i++) latte_d[latte.first[i]].emplace_back(i);
for (int i = 0; i < N; i++) malta_d[malta.first[i]].emplace_back(i);
for (int i = d; i >= 0; i--) {
map<vector<int>, int> ord;
for (auto &idx : latte_d[i]) {
sort(begin(latte_key[idx]), end(latte_key[idx]));
ord[latte_key[idx]]++;
}
for (auto &idx : malta_d[i]) {
sort(begin(malta_key[idx]), end(malta_key[idx]));
if (--ord[malta_key[idx]] < 0) return false;
}
if (i == 0) return ord.size() == 1;
int ptr = 0;
for (auto &p : ord) {
if (p.second != 0) return false;
p.second = ptr++;
}
for (auto &idx : latte_d[i]) {
latte_key[latte.second[idx]].emplace_back(ord[latte_key[idx]]);
}
for (auto &idx : malta_d[i]) {
malta_key[malta.second[idx]].emplace_back(ord[malta_key[idx]]);
}
}
assert(0);
};
auto p = centroid(a), q = centroid(b);
if (p.size() != q.size()) return false;
auto a1 = get_uku(a, p[0]);
auto b1 = get_uku(b, q[0]);
if (solve(a1, b1)) return true;
if (p.size() == 1) return false;
auto a2 = get_uku(a, p[1]);
return solve(a2, b1);
}
#line 2 "graph/tree/tree-isomorphism.hpp"
#line 2 "graph/graph-template.hpp"
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 2 "graph/tree/centroid.hpp"
#line 4 "graph/tree/centroid.hpp"
/**
* @brief Centroid(木の重心)
*
*/
template <typename T>
vector<int> centroid(const Graph<T> &g) {
const int N = (int)g.size();
stack<pair<int, int> > st;
st.emplace(0, -1);
vector<int> sz(N), par(N);
while (!st.empty()) {
auto p = st.top();
if (sz[p.first] == 0) {
sz[p.first] = 1;
for (auto &to : g[p.first])
if (to != p.second) st.emplace(to, p.first);
} else {
for (auto &to : g[p.first])
if (to != p.second) sz[p.first] += sz[to];
par[p.first] = p.second;
st.pop();
}
}
vector<int> ret;
int size = N;
for (int i = 0; i < N; i++) {
int val = N - sz[i];
for (auto &to : g[i])
if (to != par[i]) val = max(val, sz[to]);
if (val < size) size = val, ret.clear();
if (val == size) ret.emplace_back(i);
}
return ret;
}
#line 5 "graph/tree/tree-isomorphism.hpp"
/**
* @brief Tree-Isomorphism(木の同型性判定)
*/
template <typename T>
bool tree_isomorphism(const Graph<T> &a, const Graph<T> &b) {
if (a.size() != b.size()) return false;
const int N = (int)a.size();
using pvi = pair<vector<int>, vector<int> >;
auto get_uku = [&](const Graph<T> &t, int e) {
stack<pair<int, int> > st;
st.emplace(e, -1);
vector<int> dep(N, -1), par(N);
while (!st.empty()) {
auto p = st.top();
if (dep[p.first] == -1) {
dep[p.first] = p.second == -1 ? 0 : dep[p.second] + 1;
for (auto &to : t[p.first])
if (to != p.second) st.emplace(to, p.first);
} else {
par[p.first] = p.second;
st.pop();
}
}
return make_pair(dep, par);
};
auto solve = [&](const pvi &latte, const pvi &malta) {
int d = *max_element(begin(latte.first), end(latte.first));
if (d != *max_element(begin(malta.first), end(malta.first))) return false;
vector<vector<int> > latte_d(d + 1), malta_d(d + 1), latte_key(N),
malta_key(N);
for (int i = 0; i < N; i++) latte_d[latte.first[i]].emplace_back(i);
for (int i = 0; i < N; i++) malta_d[malta.first[i]].emplace_back(i);
for (int i = d; i >= 0; i--) {
map<vector<int>, int> ord;
for (auto &idx : latte_d[i]) {
sort(begin(latte_key[idx]), end(latte_key[idx]));
ord[latte_key[idx]]++;
}
for (auto &idx : malta_d[i]) {
sort(begin(malta_key[idx]), end(malta_key[idx]));
if (--ord[malta_key[idx]] < 0) return false;
}
if (i == 0) return ord.size() == 1;
int ptr = 0;
for (auto &p : ord) {
if (p.second != 0) return false;
p.second = ptr++;
}
for (auto &idx : latte_d[i]) {
latte_key[latte.second[idx]].emplace_back(ord[latte_key[idx]]);
}
for (auto &idx : malta_d[i]) {
malta_key[malta.second[idx]].emplace_back(ord[malta_key[idx]]);
}
}
assert(0);
};
auto p = centroid(a), q = centroid(b);
if (p.size() != q.size()) return false;
auto a1 = get_uku(a, p[0]);
auto b1 = get_uku(b, q[0]);
if (solve(a1, b1)) return true;
if (p.size() == 1) return false;
auto a2 = get_uku(a, p[1]);
return solve(a2, b1);
}