This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "string/wildcard-pattern-matching.hpp"
#include "../math/fft/number-theoretic-transform-friendly-mod-int.hpp"
template <class mint, class S, class T>
std::vector<int> wildcard_pattern_matching(S a, S b, T wildcard) {
int n = (int)a.size(), m = (int)b.size();
assert(m <= n);
vector<mint> as(n), bs(n), cs(n), ss(m), ts(m), us(m);
for (int i = 0; i < n; i++) {
mint x(a[i] == wildcard ? 0 : a[i]);
mint y(a[i] == wildcard ? 0 : 1);
as[i] = y * x * x;
bs[i] = y * x * -2;
cs[i] = y;
}
for (int i = 0; i < m; i++) {
mint x(b[i] == wildcard ? 0 : b[i]);
mint y(b[i] == wildcard ? 0 : 1);
ss[m - i - 1] = y;
ts[m - i - 1] = y * x;
us[m - i - 1] = y * x * x;
}
NumberTheoreticTransformFriendlyModInt<mint> ntt;
auto f = ntt.multiply(as, ss);
auto g = ntt.multiply(bs, ts);
auto h = ntt.multiply(cs, us);
vector<int> result(n - m + 1);
for (int i = 0; i < (int)result.size(); i++) {
int j = i + m - 1;
mint x(f[j] + g[j] + h[j]);
result[i] = x.val() == 0;
}
return result;
}
#line 1 "math/fft/number-theoretic-transform-friendly-mod-int.hpp"
/**
* @brief Number Theoretic Transform Friendly ModInt
*/
template <typename Mint>
struct NumberTheoreticTransformFriendlyModInt {
static vector<Mint> roots, iroots, rate3, irate3;
static int max_base;
NumberTheoreticTransformFriendlyModInt() = default;
static void init() {
if (roots.empty()) {
const unsigned mod = Mint::mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
Mint root = 2;
while (root.pow((mod - 1) >> 1) == 1) {
root += 1;
}
assert(root.pow(mod - 1) == 1);
roots.resize(max_base + 1);
iroots.resize(max_base + 1);
rate3.resize(max_base + 1);
irate3.resize(max_base + 1);
roots[max_base] = root.pow((mod - 1) >> max_base);
iroots[max_base] = Mint(1) / roots[max_base];
for (int i = max_base - 1; i >= 0; i--) {
roots[i] = roots[i + 1] * roots[i + 1];
iroots[i] = iroots[i + 1] * iroots[i + 1];
}
{
Mint prod = 1, iprod = 1;
for (int i = 0; i <= max_base - 3; i++) {
rate3[i] = roots[i + 3] * prod;
irate3[i] = iroots[i + 3] * iprod;
prod *= iroots[i + 3];
iprod *= roots[i + 3];
}
}
}
}
static void ntt(vector<Mint> &a) {
init();
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = 0;
Mint imag = roots[2];
if (h & 1) {
int p = 1 << (h - 1);
Mint rot = 1;
for (int i = 0; i < p; i++) {
auto r = a[i + p];
a[i + p] = a[i] - r;
a[i] += r;
}
len++;
}
for (; len + 1 < h; len += 2) {
int p = 1 << (h - len - 2);
{ // s = 0
for (int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i] = a0a2 + a1a3;
a[i + 1 * p] = a0a2 - a1a3;
a[i + 2 * p] = a0na2 + a1na3imag;
a[i + 3 * p] = a0na2 - a1na3imag;
}
}
Mint rot = rate3[0];
for (int s = 1; s < (1 << len); s++) {
int offset = s << (h - len);
Mint rot2 = rot * rot;
Mint rot3 = rot2 * rot;
for (int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + p] * rot;
auto a2 = a[i + offset + 2 * p] * rot2;
auto a3 = a[i + offset + 3 * p] * rot3;
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i + offset] = a0a2 + a1a3;
a[i + offset + 1 * p] = a0a2 - a1a3;
a[i + offset + 2 * p] = a0na2 + a1na3imag;
a[i + offset + 3 * p] = a0na2 - a1na3imag;
}
rot *= rate3[__builtin_ctz(~s)];
}
}
}
static void intt(vector<Mint> &a, bool f = true) {
init();
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = h;
Mint iimag = iroots[2];
for (; len > 1; len -= 2) {
int p = 1 << (h - len);
{ // s = 0
for (int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + 1 * p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i] = a0a1 + a2a3;
a[i + 1 * p] = (a0na1 + a2na3iimag);
a[i + 2 * p] = (a0a1 - a2a3);
a[i + 3 * p] = (a0na1 - a2na3iimag);
}
}
Mint irot = irate3[0];
for (int s = 1; s < (1 << (len - 2)); s++) {
int offset = s << (h - len + 2);
Mint irot2 = irot * irot;
Mint irot3 = irot2 * irot;
for (int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + 1 * p];
auto a2 = a[i + offset + 2 * p];
auto a3 = a[i + offset + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i + offset] = a0a1 + a2a3;
a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irot;
a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2;
a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3;
}
irot *= irate3[__builtin_ctz(~s)];
}
}
if (len >= 1) {
int p = 1 << (h - 1);
for (int i = 0; i < p; i++) {
auto ajp = a[i] - a[i + p];
a[i] += a[i + p];
a[i + p] = ajp;
}
}
if (f) {
Mint inv_sz = Mint(1) / n;
for (int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
static vector<Mint> multiply(vector<Mint> a, vector<Mint> b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for (int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::roots =
vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::iroots =
vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::rate3 =
vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::irate3 =
vector<Mint>();
template <typename Mint>
int NumberTheoreticTransformFriendlyModInt<Mint>::max_base = 0;
#line 2 "string/wildcard-pattern-matching.hpp"
template <class mint, class S, class T>
std::vector<int> wildcard_pattern_matching(S a, S b, T wildcard) {
int n = (int)a.size(), m = (int)b.size();
assert(m <= n);
vector<mint> as(n), bs(n), cs(n), ss(m), ts(m), us(m);
for (int i = 0; i < n; i++) {
mint x(a[i] == wildcard ? 0 : a[i]);
mint y(a[i] == wildcard ? 0 : 1);
as[i] = y * x * x;
bs[i] = y * x * -2;
cs[i] = y;
}
for (int i = 0; i < m; i++) {
mint x(b[i] == wildcard ? 0 : b[i]);
mint y(b[i] == wildcard ? 0 : 1);
ss[m - i - 1] = y;
ts[m - i - 1] = y * x;
us[m - i - 1] = y * x * x;
}
NumberTheoreticTransformFriendlyModInt<mint> ntt;
auto f = ntt.multiply(as, ss);
auto g = ntt.multiply(bs, ts);
auto h = ntt.multiply(cs, us);
vector<int> result(n - m + 1);
for (int i = 0; i < (int)result.size(); i++) {
int j = i + m - 1;
mint x(f[j] + g[j] + h[j]);
result[i] = x.val() == 0;
}
return result;
}