This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/wildcard_pattern_matching
#include "../../template/template.hpp"
#include "../../string/wildcard-pattern-matching.hpp"
#include "../../math/combinatorics/montgomery-mod-int.hpp"
int main() {
string S, T;
cin >> S >> T;
for(auto& a : wildcard_pattern_matching< modint998244353 >(S, T, '*')) {
cout << a;
}
cout << endl;
}
#line 1 "test/verify/yosupo-wildcard-pattern-matching.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/wildcard_pattern_matching
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
return a > b && (a = b, true);
}
template <typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template <typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}
template <typename... Args>
decltype(auto) operator()(Args &&...args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-wildcard-pattern-matching.test.cpp"
#line 1 "math/fft/number-theoretic-transform-friendly-mod-int.hpp"
/**
* @brief Number Theoretic Transform Friendly ModInt
*/
template <typename Mint>
struct NumberTheoreticTransformFriendlyModInt {
static vector<Mint> roots, iroots, rate3, irate3;
static int max_base;
NumberTheoreticTransformFriendlyModInt() = default;
static void init() {
if (roots.empty()) {
const unsigned mod = Mint::mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
Mint root = 2;
while (root.pow((mod - 1) >> 1) == 1) {
root += 1;
}
assert(root.pow(mod - 1) == 1);
roots.resize(max_base + 1);
iroots.resize(max_base + 1);
rate3.resize(max_base + 1);
irate3.resize(max_base + 1);
roots[max_base] = root.pow((mod - 1) >> max_base);
iroots[max_base] = Mint(1) / roots[max_base];
for (int i = max_base - 1; i >= 0; i--) {
roots[i] = roots[i + 1] * roots[i + 1];
iroots[i] = iroots[i + 1] * iroots[i + 1];
}
{
Mint prod = 1, iprod = 1;
for (int i = 0; i <= max_base - 3; i++) {
rate3[i] = roots[i + 3] * prod;
irate3[i] = iroots[i + 3] * iprod;
prod *= iroots[i + 3];
iprod *= roots[i + 3];
}
}
}
}
static void ntt(vector<Mint> &a) {
init();
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = 0;
Mint imag = roots[2];
if (h & 1) {
int p = 1 << (h - 1);
Mint rot = 1;
for (int i = 0; i < p; i++) {
auto r = a[i + p];
a[i + p] = a[i] - r;
a[i] += r;
}
len++;
}
for (; len + 1 < h; len += 2) {
int p = 1 << (h - len - 2);
{ // s = 0
for (int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i] = a0a2 + a1a3;
a[i + 1 * p] = a0a2 - a1a3;
a[i + 2 * p] = a0na2 + a1na3imag;
a[i + 3 * p] = a0na2 - a1na3imag;
}
}
Mint rot = rate3[0];
for (int s = 1; s < (1 << len); s++) {
int offset = s << (h - len);
Mint rot2 = rot * rot;
Mint rot3 = rot2 * rot;
for (int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + p] * rot;
auto a2 = a[i + offset + 2 * p] * rot2;
auto a3 = a[i + offset + 3 * p] * rot3;
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i + offset] = a0a2 + a1a3;
a[i + offset + 1 * p] = a0a2 - a1a3;
a[i + offset + 2 * p] = a0na2 + a1na3imag;
a[i + offset + 3 * p] = a0na2 - a1na3imag;
}
rot *= rate3[__builtin_ctz(~s)];
}
}
}
static void intt(vector<Mint> &a, bool f = true) {
init();
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = h;
Mint iimag = iroots[2];
for (; len > 1; len -= 2) {
int p = 1 << (h - len);
{ // s = 0
for (int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + 1 * p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i] = a0a1 + a2a3;
a[i + 1 * p] = (a0na1 + a2na3iimag);
a[i + 2 * p] = (a0a1 - a2a3);
a[i + 3 * p] = (a0na1 - a2na3iimag);
}
}
Mint irot = irate3[0];
for (int s = 1; s < (1 << (len - 2)); s++) {
int offset = s << (h - len + 2);
Mint irot2 = irot * irot;
Mint irot3 = irot2 * irot;
for (int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + 1 * p];
auto a2 = a[i + offset + 2 * p];
auto a3 = a[i + offset + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i + offset] = a0a1 + a2a3;
a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irot;
a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2;
a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3;
}
irot *= irate3[__builtin_ctz(~s)];
}
}
if (len >= 1) {
int p = 1 << (h - 1);
for (int i = 0; i < p; i++) {
auto ajp = a[i] - a[i + p];
a[i] += a[i + p];
a[i + p] = ajp;
}
}
if (f) {
Mint inv_sz = Mint(1) / n;
for (int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
static vector<Mint> multiply(vector<Mint> a, vector<Mint> b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for (int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::roots =
vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::iroots =
vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::rate3 =
vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::irate3 =
vector<Mint>();
template <typename Mint>
int NumberTheoreticTransformFriendlyModInt<Mint>::max_base = 0;
#line 2 "string/wildcard-pattern-matching.hpp"
template <class mint, class S, class T>
std::vector<int> wildcard_pattern_matching(S a, S b, T wildcard) {
int n = (int)a.size(), m = (int)b.size();
assert(m <= n);
vector<mint> as(n), bs(n), cs(n), ss(m), ts(m), us(m);
for (int i = 0; i < n; i++) {
mint x(a[i] == wildcard ? 0 : a[i]);
mint y(a[i] == wildcard ? 0 : 1);
as[i] = y * x * x;
bs[i] = y * x * -2;
cs[i] = y;
}
for (int i = 0; i < m; i++) {
mint x(b[i] == wildcard ? 0 : b[i]);
mint y(b[i] == wildcard ? 0 : 1);
ss[m - i - 1] = y;
ts[m - i - 1] = y * x;
us[m - i - 1] = y * x * x;
}
NumberTheoreticTransformFriendlyModInt<mint> ntt;
auto f = ntt.multiply(as, ss);
auto g = ntt.multiply(bs, ts);
auto h = ntt.multiply(cs, us);
vector<int> result(n - m + 1);
for (int i = 0; i < (int)result.size(); i++) {
int j = i + m - 1;
mint x(f[j] + g[j] + h[j]);
result[i] = x.val() == 0;
}
return result;
}
#line 6 "test/verify/yosupo-wildcard-pattern-matching.test.cpp"
#line 2 "math/combinatorics/montgomery-mod-int.hpp"
template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
private:
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod_;
for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod_) % mod_;
static_assert(r * mod_ == 1, "invalid, r * mod != 1");
static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
public:
MontgomeryModInt() : x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
}
mint &operator+=(const mint &p) {
if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
return *this;
}
mint &operator-=(const mint &p) {
if (i32(x -= p.x) < 0) x += 2 * mod();
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inv();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const {
return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
}
bool operator!=(const mint &p) const {
return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
}
u32 val() const {
u32 ret = reduce(x);
return ret >= mod() ? ret - mod() : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inv() const { return pow(mod() - 2); }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.val();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static constexpr u32 mod() { return mod_; }
};
template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
#line 8 "test/verify/yosupo-wildcard-pattern-matching.test.cpp"
int main() {
string S, T;
cin >> S >> T;
for(auto& a : wildcard_pattern_matching< modint998244353 >(S, T, '*')) {
cout << a;
}
cout << endl;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | alternating_00 | AC | 232 ms | 31 MB |
g++ | alternating_01 | AC | 235 ms | 35 MB |
g++ | alternating_02 | AC | 31 ms | 7 MB |
g++ | alternating_03 | AC | 126 ms | 18 MB |
g++ | alternating_04 | AC | 119 ms | 17 MB |
g++ | example_00 | AC | 5 ms | 3 MB |
g++ | hack_998244353_00 | AC | 266 ms | 34 MB |
g++ | hack_998244353_01 | AC | 265 ms | 34 MB |
g++ | hack_998244353_02 | AC | 263 ms | 34 MB |
g++ | random_00 | AC | 269 ms | 31 MB |
g++ | random_01 | AC | 269 ms | 35 MB |
g++ | random_02 | AC | 35 ms | 7 MB |
g++ | random_03 | AC | 141 ms | 18 MB |
g++ | random_04 | AC | 134 ms | 17 MB |
g++ | random_ab_00 | AC | 254 ms | 31 MB |
g++ | random_ab_01 | AC | 257 ms | 35 MB |
g++ | random_ab_02 | AC | 34 ms | 7 MB |
g++ | random_ab_03 | AC | 136 ms | 18 MB |
g++ | random_ab_04 | AC | 129 ms | 17 MB |
clang++ | alternating_00 | AC | 279 ms | 31 MB |
clang++ | alternating_01 | AC | 278 ms | 35 MB |
clang++ | alternating_02 | AC | 37 ms | 7 MB |
clang++ | alternating_03 | AC | 151 ms | 19 MB |
clang++ | alternating_04 | AC | 142 ms | 18 MB |
clang++ | example_00 | AC | 5 ms | 3 MB |
clang++ | hack_998244353_00 | AC | 280 ms | 34 MB |
clang++ | hack_998244353_01 | AC | 284 ms | 34 MB |
clang++ | hack_998244353_02 | AC | 282 ms | 34 MB |
clang++ | random_00 | AC | 278 ms | 31 MB |
clang++ | random_01 | AC | 280 ms | 35 MB |
clang++ | random_02 | AC | 36 ms | 7 MB |
clang++ | random_03 | AC | 150 ms | 19 MB |
clang++ | random_04 | AC | 143 ms | 18 MB |
clang++ | random_ab_00 | AC | 278 ms | 31 MB |
clang++ | random_ab_01 | AC | 281 ms | 35 MB |
clang++ | random_ab_02 | AC | 37 ms | 7 MB |
clang++ | random_ab_03 | AC | 151 ms | 19 MB |
clang++ | random_ab_04 | AC | 143 ms | 18 MB |