Luzhiled's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub ei1333/library

:heavy_check_mark: test/verify/yosupo-wildcard-pattern-matching.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/wildcard_pattern_matching

#include "../../template/template.hpp"

#include "../../string/wildcard-pattern-matching.hpp"

#include "../../math/combinatorics/montgomery-mod-int.hpp"

int main() {
  string S, T;
  cin >> S >> T;
  for(auto& a : wildcard_pattern_matching< modint998244353 >(S, T, '*')) {
    cout << a;
  }
  cout << endl;
}
#line 1 "test/verify/yosupo-wildcard-pattern-matching.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/wildcard_pattern_matching

#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif

using namespace std;

using int64 = long long;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
  os << p.first << " " << p.second;
  return os;
}

template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  for (int i = 0; i < (int)v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (T &in : v) is >> in;
  return is;
}

template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
  return a < b && (a = b, true);
}

template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
  return a > b && (a = b, true);
}

template <typename T = int64>
vector<T> make_v(size_t a) {
  return vector<T>(a);
}

template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
  return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}

template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
  t = v;
}

template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
  for (auto &e : t) fill_v(e, v);
}

template <typename F>
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}

  template <typename... Args>
  decltype(auto) operator()(Args &&...args) const {
    return F::operator()(*this, std::forward<Args>(args)...);
  }
};

template <typename F>
inline decltype(auto) MFP(F &&f) {
  return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-wildcard-pattern-matching.test.cpp"

#line 1 "math/fft/number-theoretic-transform-friendly-mod-int.hpp"
/**
 * @brief Number Theoretic Transform Friendly ModInt
 */
template <typename Mint>
struct NumberTheoreticTransformFriendlyModInt {
  static vector<Mint> roots, iroots, rate3, irate3;
  static int max_base;

  NumberTheoreticTransformFriendlyModInt() = default;

  static void init() {
    if (roots.empty()) {
      const unsigned mod = Mint::mod();
      assert(mod >= 3 && mod % 2 == 1);
      auto tmp = mod - 1;
      max_base = 0;
      while (tmp % 2 == 0) tmp >>= 1, max_base++;
      Mint root = 2;
      while (root.pow((mod - 1) >> 1) == 1) {
        root += 1;
      }
      assert(root.pow(mod - 1) == 1);

      roots.resize(max_base + 1);
      iroots.resize(max_base + 1);
      rate3.resize(max_base + 1);
      irate3.resize(max_base + 1);

      roots[max_base] = root.pow((mod - 1) >> max_base);
      iroots[max_base] = Mint(1) / roots[max_base];
      for (int i = max_base - 1; i >= 0; i--) {
        roots[i] = roots[i + 1] * roots[i + 1];
        iroots[i] = iroots[i + 1] * iroots[i + 1];
      }
      {
        Mint prod = 1, iprod = 1;
        for (int i = 0; i <= max_base - 3; i++) {
          rate3[i] = roots[i + 3] * prod;
          irate3[i] = iroots[i + 3] * iprod;
          prod *= iroots[i + 3];
          iprod *= roots[i + 3];
        }
      }
    }
  }

  static void ntt(vector<Mint> &a) {
    init();
    const int n = (int)a.size();
    assert((n & (n - 1)) == 0);
    int h = __builtin_ctz(n);
    assert(h <= max_base);
    int len = 0;
    Mint imag = roots[2];
    if (h & 1) {
      int p = 1 << (h - 1);
      Mint rot = 1;
      for (int i = 0; i < p; i++) {
        auto r = a[i + p];
        a[i + p] = a[i] - r;
        a[i] += r;
      }
      len++;
    }
    for (; len + 1 < h; len += 2) {
      int p = 1 << (h - len - 2);
      {  // s = 0
        for (int i = 0; i < p; i++) {
          auto a0 = a[i];
          auto a1 = a[i + p];
          auto a2 = a[i + 2 * p];
          auto a3 = a[i + 3 * p];
          auto a1na3imag = (a1 - a3) * imag;
          auto a0a2 = a0 + a2;
          auto a1a3 = a1 + a3;
          auto a0na2 = a0 - a2;
          a[i] = a0a2 + a1a3;
          a[i + 1 * p] = a0a2 - a1a3;
          a[i + 2 * p] = a0na2 + a1na3imag;
          a[i + 3 * p] = a0na2 - a1na3imag;
        }
      }
      Mint rot = rate3[0];
      for (int s = 1; s < (1 << len); s++) {
        int offset = s << (h - len);
        Mint rot2 = rot * rot;
        Mint rot3 = rot2 * rot;
        for (int i = 0; i < p; i++) {
          auto a0 = a[i + offset];
          auto a1 = a[i + offset + p] * rot;
          auto a2 = a[i + offset + 2 * p] * rot2;
          auto a3 = a[i + offset + 3 * p] * rot3;
          auto a1na3imag = (a1 - a3) * imag;
          auto a0a2 = a0 + a2;
          auto a1a3 = a1 + a3;
          auto a0na2 = a0 - a2;
          a[i + offset] = a0a2 + a1a3;
          a[i + offset + 1 * p] = a0a2 - a1a3;
          a[i + offset + 2 * p] = a0na2 + a1na3imag;
          a[i + offset + 3 * p] = a0na2 - a1na3imag;
        }
        rot *= rate3[__builtin_ctz(~s)];
      }
    }
  }

  static void intt(vector<Mint> &a, bool f = true) {
    init();
    const int n = (int)a.size();
    assert((n & (n - 1)) == 0);
    int h = __builtin_ctz(n);
    assert(h <= max_base);
    int len = h;
    Mint iimag = iroots[2];
    for (; len > 1; len -= 2) {
      int p = 1 << (h - len);
      {  // s = 0
        for (int i = 0; i < p; i++) {
          auto a0 = a[i];
          auto a1 = a[i + 1 * p];
          auto a2 = a[i + 2 * p];
          auto a3 = a[i + 3 * p];
          auto a2na3iimag = (a2 - a3) * iimag;
          auto a0na1 = a0 - a1;
          auto a0a1 = a0 + a1;
          auto a2a3 = a2 + a3;
          a[i] = a0a1 + a2a3;
          a[i + 1 * p] = (a0na1 + a2na3iimag);
          a[i + 2 * p] = (a0a1 - a2a3);
          a[i + 3 * p] = (a0na1 - a2na3iimag);
        }
      }
      Mint irot = irate3[0];
      for (int s = 1; s < (1 << (len - 2)); s++) {
        int offset = s << (h - len + 2);
        Mint irot2 = irot * irot;
        Mint irot3 = irot2 * irot;
        for (int i = 0; i < p; i++) {
          auto a0 = a[i + offset];
          auto a1 = a[i + offset + 1 * p];
          auto a2 = a[i + offset + 2 * p];
          auto a3 = a[i + offset + 3 * p];
          auto a2na3iimag = (a2 - a3) * iimag;
          auto a0na1 = a0 - a1;
          auto a0a1 = a0 + a1;
          auto a2a3 = a2 + a3;
          a[i + offset] = a0a1 + a2a3;
          a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irot;
          a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2;
          a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3;
        }
        irot *= irate3[__builtin_ctz(~s)];
      }
    }
    if (len >= 1) {
      int p = 1 << (h - 1);
      for (int i = 0; i < p; i++) {
        auto ajp = a[i] - a[i + p];
        a[i] += a[i + p];
        a[i + p] = ajp;
      }
    }
    if (f) {
      Mint inv_sz = Mint(1) / n;
      for (int i = 0; i < n; i++) a[i] *= inv_sz;
    }
  }

  static vector<Mint> multiply(vector<Mint> a, vector<Mint> b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while ((1 << nbase) < need) nbase++;
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    Mint inv_sz = Mint(1) / sz;
    for (int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
    intt(a, false);
    a.resize(need);
    return a;
  }
};

template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::roots =
    vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::iroots =
    vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::rate3 =
    vector<Mint>();
template <typename Mint>
vector<Mint> NumberTheoreticTransformFriendlyModInt<Mint>::irate3 =
    vector<Mint>();
template <typename Mint>
int NumberTheoreticTransformFriendlyModInt<Mint>::max_base = 0;
#line 2 "string/wildcard-pattern-matching.hpp"

template <class mint, class S, class T>
std::vector<int> wildcard_pattern_matching(S a, S b, T wildcard) {
  int n = (int)a.size(), m = (int)b.size();
  assert(m <= n);

  vector<mint> as(n), bs(n), cs(n), ss(m), ts(m), us(m);
  for (int i = 0; i < n; i++) {
    mint x(a[i] == wildcard ? 0 : a[i]);
    mint y(a[i] == wildcard ? 0 : 1);
    as[i] = y * x * x;
    bs[i] = y * x * -2;
    cs[i] = y;
  }

  for (int i = 0; i < m; i++) {
    mint x(b[i] == wildcard ? 0 : b[i]);
    mint y(b[i] == wildcard ? 0 : 1);
    ss[m - i - 1] = y;
    ts[m - i - 1] = y * x;
    us[m - i - 1] = y * x * x;
  }

  NumberTheoreticTransformFriendlyModInt<mint> ntt;
  auto f = ntt.multiply(as, ss);
  auto g = ntt.multiply(bs, ts);
  auto h = ntt.multiply(cs, us);

  vector<int> result(n - m + 1);
  for (int i = 0; i < (int)result.size(); i++) {
    int j = i + m - 1;
    mint x(f[j] + g[j] + h[j]);
    result[i] = x.val() == 0;
  }

  return result;
}
#line 6 "test/verify/yosupo-wildcard-pattern-matching.test.cpp"

#line 2 "math/combinatorics/montgomery-mod-int.hpp"

template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
 private:
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using i64 = int64_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod_;
    for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
    return ret;
  }

  static constexpr u32 r = get_r();

  static constexpr u32 n2 = -u64(mod_) % mod_;

  static_assert(r * mod_ == 1, "invalid, r * mod != 1");
  static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");

  u32 x;

 public:
  MontgomeryModInt() : x{} {}

  MontgomeryModInt(const i64 &a)
      : x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}

  static constexpr u32 reduce(const u64 &b) {
    return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
  }

  mint &operator+=(const mint &p) {
    if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
    return *this;
  }

  mint &operator-=(const mint &p) {
    if (i32(x -= p.x) < 0) x += 2 * mod();
    return *this;
  }

  mint &operator*=(const mint &p) {
    x = reduce(u64(x) * p.x);
    return *this;
  }

  mint &operator/=(const mint &p) {
    *this *= p.inv();
    return *this;
  }

  mint operator-() const { return mint() - *this; }

  mint operator+(const mint &p) const { return mint(*this) += p; }

  mint operator-(const mint &p) const { return mint(*this) -= p; }

  mint operator*(const mint &p) const { return mint(*this) *= p; }

  mint operator/(const mint &p) const { return mint(*this) /= p; }

  bool operator==(const mint &p) const {
    return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
  }

  bool operator!=(const mint &p) const {
    return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
  }

  u32 val() const {
    u32 ret = reduce(x);
    return ret >= mod() ? ret - mod() : ret;
  }

  mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  mint inv() const { return pow(mod() - 2); }

  friend ostream &operator<<(ostream &os, const mint &p) {
    return os << p.val();
  }

  friend istream &operator>>(istream &is, mint &a) {
    i64 t;
    is >> t;
    a = mint(t);
    return is;
  }

  static constexpr u32 mod() { return mod_; }
};

template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
#line 8 "test/verify/yosupo-wildcard-pattern-matching.test.cpp"

int main() {
  string S, T;
  cin >> S >> T;
  for(auto& a : wildcard_pattern_matching< modint998244353 >(S, T, '*')) {
    cout << a;
  }
  cout << endl;
}

Test cases

Env Name Status Elapsed Memory
g++ alternating_00 :heavy_check_mark: AC 232 ms 31 MB
g++ alternating_01 :heavy_check_mark: AC 235 ms 35 MB
g++ alternating_02 :heavy_check_mark: AC 31 ms 7 MB
g++ alternating_03 :heavy_check_mark: AC 126 ms 18 MB
g++ alternating_04 :heavy_check_mark: AC 119 ms 17 MB
g++ example_00 :heavy_check_mark: AC 5 ms 3 MB
g++ hack_998244353_00 :heavy_check_mark: AC 266 ms 34 MB
g++ hack_998244353_01 :heavy_check_mark: AC 265 ms 34 MB
g++ hack_998244353_02 :heavy_check_mark: AC 263 ms 34 MB
g++ random_00 :heavy_check_mark: AC 269 ms 31 MB
g++ random_01 :heavy_check_mark: AC 269 ms 35 MB
g++ random_02 :heavy_check_mark: AC 35 ms 7 MB
g++ random_03 :heavy_check_mark: AC 141 ms 18 MB
g++ random_04 :heavy_check_mark: AC 134 ms 17 MB
g++ random_ab_00 :heavy_check_mark: AC 254 ms 31 MB
g++ random_ab_01 :heavy_check_mark: AC 257 ms 35 MB
g++ random_ab_02 :heavy_check_mark: AC 34 ms 7 MB
g++ random_ab_03 :heavy_check_mark: AC 136 ms 18 MB
g++ random_ab_04 :heavy_check_mark: AC 129 ms 17 MB
clang++ alternating_00 :heavy_check_mark: AC 279 ms 31 MB
clang++ alternating_01 :heavy_check_mark: AC 278 ms 35 MB
clang++ alternating_02 :heavy_check_mark: AC 37 ms 7 MB
clang++ alternating_03 :heavy_check_mark: AC 151 ms 19 MB
clang++ alternating_04 :heavy_check_mark: AC 142 ms 18 MB
clang++ example_00 :heavy_check_mark: AC 5 ms 3 MB
clang++ hack_998244353_00 :heavy_check_mark: AC 280 ms 34 MB
clang++ hack_998244353_01 :heavy_check_mark: AC 284 ms 34 MB
clang++ hack_998244353_02 :heavy_check_mark: AC 282 ms 34 MB
clang++ random_00 :heavy_check_mark: AC 278 ms 31 MB
clang++ random_01 :heavy_check_mark: AC 280 ms 35 MB
clang++ random_02 :heavy_check_mark: AC 36 ms 7 MB
clang++ random_03 :heavy_check_mark: AC 150 ms 19 MB
clang++ random_04 :heavy_check_mark: AC 143 ms 18 MB
clang++ random_ab_00 :heavy_check_mark: AC 278 ms 31 MB
clang++ random_ab_01 :heavy_check_mark: AC 281 ms 35 MB
clang++ random_ab_02 :heavy_check_mark: AC 37 ms 7 MB
clang++ random_ab_03 :heavy_check_mark: AC 151 ms 19 MB
clang++ random_ab_04 :heavy_check_mark: AC 143 ms 18 MB
Back to top page