This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2270"
#include "../../template/template.hpp"
#include "../../other/mo-tree.hpp"
#include "../../structure/others/binary-indexed-tree.hpp"
int main() {
int N, Q;
cin >> N >> Q;
vector< int > A(N);
for(auto &a: A) cin >> a;
auto vs = A;
sort(begin(vs), end(vs));
vs.erase(unique(begin(vs), end(vs)), end(vs));
for(auto &a: A) a = lower_bound(begin(vs), end(vs), a) - begin(vs);
MoTree<> g(N);
g.read(N - 1);
vector< int > K(Q);
for(int i = 0; i < Q; i++) {
int a, b;
cin >> a >> b >> K[i];
--a, --b;
g.add(a, b);
}
vector< int64 > ans(Q);
BinaryIndexedTree< int > bit(N);
int64 sum = 0;
auto add = [&](int i) {
bit.apply(A[i], 1);
};
auto erase = [&](int i) {
bit.apply(A[i], -1);
};
auto out = [&](int q) {
ans[q] = vs[bit.lower_bound(K[q])];
};
g.build(add, erase, out);
for(auto &p: ans) cout << p << "\n";
}
#line 1 "test/verify/aoj-2270.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2270"
#line 1 "template/template.hpp"
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
explicit FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
#line 4 "test/verify/aoj-2270.test.cpp"
#line 2 "graph/graph-template.hpp"
/**
* @brief Graph Template(グラフテンプレート)
*/
template< typename T = int >
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template< typename T = int >
struct Graph {
vector< vector< Edge< T > > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const {
return g.size();
}
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false, bool directed = false) {
for(int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if(weighted) cin >> c;
if(directed) add_directed_edge(a, b, c);
else add_edge(a, b, c);
}
}
inline vector< Edge< T > > &operator[](const int &k) {
return g[k];
}
inline const vector< Edge< T > > &operator[](const int &k) const {
return g[k];
}
};
template< typename T = int >
using Edges = vector< Edge< T > >;
#line 2 "structure/union-find/union-find.hpp"
struct UnionFind {
vector< int > data;
UnionFind() = default;
explicit UnionFind(size_t sz) : data(sz, -1) {}
bool unite(int x, int y) {
x = find(x), y = find(y);
if(x == y) return false;
if(data[x] > data[y]) swap(x, y);
data[x] += data[y];
data[y] = x;
return true;
}
int find(int k) {
if(data[k] < 0) return (k);
return data[k] = find(data[k]);
}
int size(int k) {
return -data[find(k)];
}
bool same(int x, int y) {
return find(x) == find(y);
}
vector< vector< int > > groups() {
int n = (int) data.size();
vector< vector< int > > ret(n);
for(int i = 0; i < n; i++) {
ret[find(i)].emplace_back(i);
}
ret.erase(remove_if(begin(ret), end(ret), [&](const vector< int > &v) {
return v.empty();
}), end(ret));
return ret;
}
};
#line 3 "graph/tree/offline-lca.hpp"
/**
* @brief Offline LCA(オフライン最小共通祖先)
**/
template< typename T >
vector< int > offline_lca(const Graph< T > &g, vector< pair< int, int > > &qs, int root = 0) {
int n = (int) g.size();
UnionFind uf(n);
vector< int > st(n), mark(n), ptr(n), ans(qs.size(), -1);
int top = 0;
st[top] = root;
for(auto&[l, r]: qs) mark[l]++, mark[r]++;
vector< vector< pair< int, int > > > q(n);
for(int i = 0; i < n; i++) {
q[i].reserve(mark[i]);
mark[i] = -1;
ptr[i] = (int) g[i].size();
}
for(int i = 0; i < qs.size(); i++) {
q[qs[i].first].emplace_back(qs[i].second, i);
q[qs[i].second].emplace_back(qs[i].first, i);
}
auto run = [&](int u) -> bool {
while(ptr[u]) {
int v = g[u][--ptr[u]];
if(mark[v] == -1) {
st[++top] = v;
return true;
}
}
return false;
};
while(~top) {
int u = st[top];
if(mark[u] == -1) {
mark[u] = u;
} else {
uf.unite(u, g[u][ptr[u]]);
mark[uf.find(u)] = u;
}
if(not run(u)) {
for(auto&[v, i]: q[u]) {
if(~mark[v] and ans[i] == -1) {
ans[i] = mark[uf.find(v)];
}
}
--top;
}
}
return ans;
}
#line 3 "other/mo-tree.hpp"
/**
* @brief Mo Tree(木上のMo)
**/
template< typename T = int >
struct MoTree : Graph< T > {
using Graph< T >::Graph;
using Graph< T >::g;
vector< int > in, vs;
vector< pair< int, int > > qs;
public:
void add(int l, int r) { /* [l, r) */
qs.emplace_back(l, r);
}
private:
void dfs(int u, int p) {
in[u] = (int) vs.size();
vs.emplace_back(u);
for(auto &v: g[u]) {
if(v != p) {
dfs(v, u);
vs.emplace_back(v);
}
}
}
public:
template< typename A, typename E, typename O >
void build(const A &add, const E &erase, const O &out) {
int n = (int) g.size() * 2 - 1;
vs.reserve(n);
in.resize(g.size());
dfs(0, -1);
vector< pair< int, int > > lr;
lr.reserve(qs.size());
auto lca = offline_lca(*this, qs);
for(auto&[l, r]: qs) {
lr.emplace_back(minmax(in[l] + 1, in[r] + 1));
}
int q = (int) lr.size();
int bs = n / min< int >(n, sqrt(q));
vector< int > ord(q);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), [&](int a, int b) {
int ablock = lr[a].first / bs, bblock = lr[b].first / bs;
if(ablock != bblock) return ablock < bblock;
return (ablock & 1) ? lr[a].second > lr[b].second : lr[a].second < lr[b].second;
});
int l = 0, r = 0;
vector< int > flip(g.size());
auto f = [&](int u) {
flip[u] ^= 1;
if(flip[u]) add(u);
else erase(u);
};
for(auto &idx: ord) {
while(l > lr[idx].first) f(vs[--l]);
while(r < lr[idx].second) f(vs[r++]);
while(l < lr[idx].first) f(vs[l++]);
while(r > lr[idx].second) f(vs[--r]);
f(lca[idx]);
out(idx);
f(lca[idx]);
}
}
};
#line 6 "test/verify/aoj-2270.test.cpp"
#line 1 "structure/others/binary-indexed-tree.hpp"
/**
* @brief Binary-Indexed-Tree(BIT)
* @docs docs/binary-indexed-tree.md
*/
template< typename T >
struct BinaryIndexedTree {
private:
int n;
vector< T > data;
public:
BinaryIndexedTree() = default;
explicit BinaryIndexedTree(int n) : n(n) {
data.assign(n + 1, T());
}
explicit BinaryIndexedTree(const vector< T > &v) :
BinaryIndexedTree((int) v.size()) {
build(v);
}
void build(const vector< T > &v) {
assert(n == (int) v.size());
for(int i = 1; i <= n; i++) data[i] = v[i - 1];
for(int i = 1; i <= n; i++) {
int j = i + (i & -i);
if(j <= n) data[j] += data[i];
}
}
void apply(int k, const T &x) {
for(++k; k <= n; k += k & -k) data[k] += x;
}
T prod(int r) const {
T ret = T();
for(; r > 0; r -= r & -r) ret += data[r];
return ret;
}
T prod(int l, int r) const {
return prod(r) - prod(l);
}
int lower_bound(T x) const {
int i = 0;
for(int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
if(i + k <= n && data[i + k] < x) {
x -= data[i + k];
i += k;
}
}
return i;
}
int upper_bound(T x) const {
int i = 0;
for(int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
if(i + k <= n && data[i + k] <= x) {
x -= data[i + k];
i += k;
}
}
return i;
}
};
#line 8 "test/verify/aoj-2270.test.cpp"
int main() {
int N, Q;
cin >> N >> Q;
vector< int > A(N);
for(auto &a: A) cin >> a;
auto vs = A;
sort(begin(vs), end(vs));
vs.erase(unique(begin(vs), end(vs)), end(vs));
for(auto &a: A) a = lower_bound(begin(vs), end(vs), a) - begin(vs);
MoTree<> g(N);
g.read(N - 1);
vector< int > K(Q);
for(int i = 0; i < Q; i++) {
int a, b;
cin >> a >> b >> K[i];
--a, --b;
g.add(a, b);
}
vector< int64 > ans(Q);
BinaryIndexedTree< int > bit(N);
int64 sum = 0;
auto add = [&](int i) {
bit.apply(A[i], 1);
};
auto erase = [&](int i) {
bit.apply(A[i], -1);
};
auto out = [&](int q) {
ans[q] = vs[bit.lower_bound(K[q])];
};
g.build(add, erase, out);
for(auto &p: ans) cout << p << "\n";
}