This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2270
#include "../../template/template.hpp"
#include "../../other/mo-tree.hpp"
#include "../../structure/others/binary-indexed-tree.hpp"
int main() {
int N, Q;
cin >> N >> Q;
vector< int > A(N);
for(auto &a: A) cin >> a;
auto vs = A;
sort(begin(vs), end(vs));
vs.erase(unique(begin(vs), end(vs)), end(vs));
for(auto &a: A) a = lower_bound(begin(vs), end(vs), a) - begin(vs);
MoTree<> g(N);
g.read(N - 1);
vector< int > K(Q);
for(int i = 0; i < Q; i++) {
int a, b;
cin >> a >> b >> K[i];
--a, --b;
g.add(a, b);
}
vector< int64 > ans(Q);
BinaryIndexedTree< int > bit(N);
int64 sum = 0;
auto add = [&](int i) {
bit.apply(A[i], 1);
};
auto erase = [&](int i) {
bit.apply(A[i], -1);
};
auto out = [&](int q) {
ans[q] = vs[bit.lower_bound(K[q])];
};
g.build(add, erase, out);
for(auto &p: ans) cout << p << "\n";
}
#line 1 "test/verify/aoj-2270.test.cpp"
// competitive-verifier: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2270
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
return a > b && (a = b, true);
}
template <typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template <typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}
template <typename... Args>
decltype(auto) operator()(Args &&...args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/aoj-2270.test.cpp"
#line 2 "graph/graph-template.hpp"
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 2 "structure/union-find/union-find.hpp"
struct UnionFind {
vector<int> data;
UnionFind() = default;
explicit UnionFind(size_t sz) : data(sz, -1) {}
bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y) return false;
if (data[x] > data[y]) swap(x, y);
data[x] += data[y];
data[y] = x;
return true;
}
int find(int k) {
if (data[k] < 0) return (k);
return data[k] = find(data[k]);
}
int size(int k) { return -data[find(k)]; }
bool same(int x, int y) { return find(x) == find(y); }
vector<vector<int> > groups() {
int n = (int)data.size();
vector<vector<int> > ret(n);
for (int i = 0; i < n; i++) {
ret[find(i)].emplace_back(i);
}
ret.erase(remove_if(begin(ret), end(ret),
[&](const vector<int> &v) { return v.empty(); }),
end(ret));
return ret;
}
};
#line 3 "graph/tree/offline-lca.hpp"
/**
* @brief Offline LCA(オフライン最小共通祖先)
**/
template <typename T>
vector<int> offline_lca(const Graph<T> &g, vector<pair<int, int> > &qs,
int root = 0) {
int n = (int)g.size();
UnionFind uf(n);
vector<int> st(n), mark(n), ptr(n), ans(qs.size(), -1);
int top = 0;
st[top] = root;
for (auto &[l, r] : qs) mark[l]++, mark[r]++;
vector<vector<pair<int, int> > > q(n);
for (int i = 0; i < n; i++) {
q[i].reserve(mark[i]);
mark[i] = -1;
ptr[i] = (int)g[i].size();
}
for (int i = 0; i < qs.size(); i++) {
q[qs[i].first].emplace_back(qs[i].second, i);
q[qs[i].second].emplace_back(qs[i].first, i);
}
auto run = [&](int u) -> bool {
while (ptr[u]) {
int v = g[u][--ptr[u]];
if (mark[v] == -1) {
st[++top] = v;
return true;
}
}
return false;
};
while (~top) {
int u = st[top];
if (mark[u] == -1) {
mark[u] = u;
} else {
uf.unite(u, g[u][ptr[u]]);
mark[uf.find(u)] = u;
}
if (not run(u)) {
for (auto &[v, i] : q[u]) {
if (~mark[v] and ans[i] == -1) {
ans[i] = mark[uf.find(v)];
}
}
--top;
}
}
return ans;
}
#line 3 "other/mo-tree.hpp"
/**
* @brief Mo Tree(木上のMo)
**/
template <typename T = int>
struct MoTree : Graph<T> {
using Graph<T>::Graph;
using Graph<T>::g;
vector<int> in, vs;
vector<pair<int, int> > qs;
public:
void add(int l, int r) { /* [l, r) */ qs.emplace_back(l, r); }
private:
void dfs(int u, int p) {
in[u] = (int)vs.size();
vs.emplace_back(u);
for (auto &v : g[u]) {
if (v != p) {
dfs(v, u);
vs.emplace_back(v);
}
}
}
public:
template <typename A, typename E, typename O>
void build(const A &add, const E &erase, const O &out) {
int n = (int)g.size() * 2 - 1;
vs.reserve(n);
in.resize(g.size());
dfs(0, -1);
vector<pair<int, int> > lr;
lr.reserve(qs.size());
auto lca = offline_lca(*this, qs);
for (auto &[l, r] : qs) {
lr.emplace_back(minmax(in[l] + 1, in[r] + 1));
}
int q = (int)lr.size();
int bs = n / min<int>(n, sqrt(q));
vector<int> ord(q);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), [&](int a, int b) {
int ablock = lr[a].first / bs, bblock = lr[b].first / bs;
if (ablock != bblock) return ablock < bblock;
return (ablock & 1) ? lr[a].second > lr[b].second
: lr[a].second < lr[b].second;
});
int l = 0, r = 0;
vector<int> flip(g.size());
auto f = [&](int u) {
flip[u] ^= 1;
if (flip[u])
add(u);
else
erase(u);
};
for (auto &idx : ord) {
while (l > lr[idx].first) f(vs[--l]);
while (r < lr[idx].second) f(vs[r++]);
while (l < lr[idx].first) f(vs[l++]);
while (r > lr[idx].second) f(vs[--r]);
f(lca[idx]);
out(idx);
f(lca[idx]);
}
}
};
#line 6 "test/verify/aoj-2270.test.cpp"
#line 1 "structure/others/binary-indexed-tree.hpp"
template <typename T>
struct BinaryIndexedTree {
private:
int n;
vector<T> data;
public:
BinaryIndexedTree() = default;
explicit BinaryIndexedTree(int n) : n(n) { data.assign(n + 1, T()); }
explicit BinaryIndexedTree(const vector<T> &v)
: BinaryIndexedTree((int)v.size()) {
build(v);
}
void build(const vector<T> &v) {
assert(n == (int)v.size());
for (int i = 1; i <= n; i++) data[i] = v[i - 1];
for (int i = 1; i <= n; i++) {
int j = i + (i & -i);
if (j <= n) data[j] += data[i];
}
}
void apply(int k, const T &x) {
for (++k; k <= n; k += k & -k) data[k] += x;
}
T prod(int r) const {
T ret = T();
for (; r > 0; r -= r & -r) ret += data[r];
return ret;
}
T prod(int l, int r) const { return prod(r) - prod(l); }
int lower_bound(T x) const {
int i = 0;
for (int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
if (i + k <= n && data[i + k] < x) {
x -= data[i + k];
i += k;
}
}
return i;
}
int upper_bound(T x) const {
int i = 0;
for (int k = 1 << (__lg(n) + 1); k > 0; k >>= 1) {
if (i + k <= n && data[i + k] <= x) {
x -= data[i + k];
i += k;
}
}
return i;
}
};
#line 8 "test/verify/aoj-2270.test.cpp"
int main() {
int N, Q;
cin >> N >> Q;
vector< int > A(N);
for(auto &a: A) cin >> a;
auto vs = A;
sort(begin(vs), end(vs));
vs.erase(unique(begin(vs), end(vs)), end(vs));
for(auto &a: A) a = lower_bound(begin(vs), end(vs), a) - begin(vs);
MoTree<> g(N);
g.read(N - 1);
vector< int > K(Q);
for(int i = 0; i < Q; i++) {
int a, b;
cin >> a >> b >> K[i];
--a, --b;
g.add(a, b);
}
vector< int64 > ans(Q);
BinaryIndexedTree< int > bit(N);
int64 sum = 0;
auto add = [&](int i) {
bit.apply(A[i], 1);
};
auto erase = [&](int i) {
bit.apply(A[i], -1);
};
auto out = [&](int q) {
ans[q] = vs[bit.lower_bound(K[q])];
};
g.build(add, erase, out);
for(auto &p: ans) cout << p << "\n";
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | testcase_00 |
![]() |
5 ms | 3 MB |
g++ | testcase_01 |
![]() |
5 ms | 3 MB |
g++ | testcase_02 |
![]() |
4 ms | 3 MB |
g++ | testcase_03 |
![]() |
5 ms | 4 MB |
g++ | testcase_04 |
![]() |
5 ms | 4 MB |
g++ | testcase_05 |
![]() |
5 ms | 3 MB |
g++ | testcase_06 |
![]() |
5 ms | 4 MB |
g++ | testcase_07 |
![]() |
5 ms | 3 MB |
g++ | testcase_08 |
![]() |
5 ms | 4 MB |
g++ | testcase_09 |
![]() |
5 ms | 3 MB |
g++ | testcase_10 |
![]() |
5 ms | 4 MB |
g++ | testcase_11 |
![]() |
6 ms | 4 MB |
g++ | testcase_12 |
![]() |
6 ms | 4 MB |
g++ | testcase_13 |
![]() |
6 ms | 4 MB |
g++ | testcase_14 |
![]() |
6 ms | 4 MB |
g++ | testcase_15 |
![]() |
6 ms | 4 MB |
g++ | testcase_16 |
![]() |
6 ms | 4 MB |
g++ | testcase_17 |
![]() |
6 ms | 4 MB |
g++ | testcase_18 |
![]() |
6 ms | 4 MB |
g++ | testcase_19 |
![]() |
1126 ms | 22 MB |
g++ | testcase_20 |
![]() |
1126 ms | 22 MB |
g++ | testcase_21 |
![]() |
1135 ms | 22 MB |
g++ | testcase_22 |
![]() |
1191 ms | 26 MB |
g++ | testcase_23 |
![]() |
1181 ms | 24 MB |
g++ | testcase_24 |
![]() |
1174 ms | 24 MB |
g++ | testcase_25 |
![]() |
1179 ms | 25 MB |
g++ | testcase_26 |
![]() |
1183 ms | 27 MB |
g++ | testcase_27 |
![]() |
689 ms | 27 MB |
g++ | testcase_28 |
![]() |
940 ms | 27 MB |
g++ | testcase_29 |
![]() |
895 ms | 24 MB |
g++ | testcase_30 |
![]() |
946 ms | 23 MB |
clang++ | testcase_00 |
![]() |
5 ms | 3 MB |
clang++ | testcase_01 |
![]() |
5 ms | 3 MB |
clang++ | testcase_02 |
![]() |
5 ms | 3 MB |
clang++ | testcase_03 |
![]() |
5 ms | 4 MB |
clang++ | testcase_04 |
![]() |
5 ms | 4 MB |
clang++ | testcase_05 |
![]() |
5 ms | 4 MB |
clang++ | testcase_06 |
![]() |
5 ms | 4 MB |
clang++ | testcase_07 |
![]() |
5 ms | 4 MB |
clang++ | testcase_08 |
![]() |
5 ms | 4 MB |
clang++ | testcase_09 |
![]() |
5 ms | 4 MB |
clang++ | testcase_10 |
![]() |
5 ms | 4 MB |
clang++ | testcase_11 |
![]() |
6 ms | 4 MB |
clang++ | testcase_12 |
![]() |
6 ms | 4 MB |
clang++ | testcase_13 |
![]() |
6 ms | 4 MB |
clang++ | testcase_14 |
![]() |
6 ms | 4 MB |
clang++ | testcase_15 |
![]() |
6 ms | 4 MB |
clang++ | testcase_16 |
![]() |
6 ms | 4 MB |
clang++ | testcase_17 |
![]() |
6 ms | 4 MB |
clang++ | testcase_18 |
![]() |
6 ms | 4 MB |
clang++ | testcase_19 |
![]() |
1154 ms | 22 MB |
clang++ | testcase_20 |
![]() |
1144 ms | 22 MB |
clang++ | testcase_21 |
![]() |
1143 ms | 22 MB |
clang++ | testcase_22 |
![]() |
1185 ms | 26 MB |
clang++ | testcase_23 |
![]() |
1205 ms | 24 MB |
clang++ | testcase_24 |
![]() |
1225 ms | 23 MB |
clang++ | testcase_25 |
![]() |
1226 ms | 25 MB |
clang++ | testcase_26 |
![]() |
1200 ms | 26 MB |
clang++ | testcase_27 |
![]() |
694 ms | 26 MB |
clang++ | testcase_28 |
![]() |
944 ms | 26 MB |
clang++ | testcase_29 |
![]() |
918 ms | 24 MB |
clang++ | testcase_30 |
![]() |
981 ms | 23 MB |