Luzhiled's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ei1333/library

:heavy_check_mark: test/verify/yosupo-montmort-number-mod.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/montmort_number_mod"

#include "../../template/template.hpp"

#include "../../math/combinatorics/arbitrary-mod-int.hpp"
#include "../../math/combinatorics/montmort.hpp"

int main() {
  int N, M;
  cin >> N >> M;
  ArbitraryModInt::set_mod(M);
  auto ret = montmort< ArbitraryModInt >(N);
  ret.erase(begin(ret));
  cout << ret << endl;
}
#line 1 "test/verify/yosupo-montmort-number-mod.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/montmort_number_mod"

#line 1 "template/template.hpp"
#include<bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = 1e9 + 7;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};
 
template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}
#line 4 "test/verify/yosupo-montmort-number-mod.test.cpp"

#line 1 "math/combinatorics/arbitrary-mod-int.hpp"
struct ArbitraryModInt {

  int x;

  ArbitraryModInt() : x(0) {}

  ArbitraryModInt(int64_t y) : x(y >= 0 ? y % get_mod() : (get_mod() - (-y) % get_mod()) % get_mod()) {}

  static int &get_mod() {
    static int mod = 0;
    return mod;
  }

  static void set_mod(int md) {
    get_mod() = md;
  }

  ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
    if((x += p.x) >= get_mod()) x -= get_mod();
    return *this;
  }

  ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
    if((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
    return *this;
  }

  ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
    unsigned long long a = (unsigned long long) x * p.x;
    unsigned xh = (unsigned) (a >> 32), xl = (unsigned) a, d, m;
    asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (get_mod()));
    x = m;
    return *this;
  }

  ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ArbitraryModInt operator-() const { return ArbitraryModInt(-x); }

  ArbitraryModInt operator+(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) += p; }

  ArbitraryModInt operator-(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) -= p; }

  ArbitraryModInt operator*(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) *= p; }

  ArbitraryModInt operator/(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) /= p; }

  bool operator==(const ArbitraryModInt &p) const { return x == p.x; }

  bool operator!=(const ArbitraryModInt &p) const { return x != p.x; }

  ArbitraryModInt inverse() const {
    int a = x, b = get_mod(), u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ArbitraryModInt(u);
  }

  ArbitraryModInt pow(int64_t n) const {
    ArbitraryModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ArbitraryModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ArbitraryModInt &a) {
    int64_t t;
    is >> t;
    a = ArbitraryModInt(t);
    return (is);
  }
};
#line 1 "math/combinatorics/montmort.hpp"
/**
 * @brief Montmort-Number(モンモール数)
 * @docs docs/montmort.md
 */
template< typename T >
vector< T > montmort(int N) {
  vector< T > dp(N + 1);
  for(int k = 2; k <= N; k++) {
    dp[k] = dp[k - 1] * k;
    if(k & 1) dp[k] -= 1;
    else dp[k] += 1;
  }
  return dp;
}
#line 7 "test/verify/yosupo-montmort-number-mod.test.cpp"

int main() {
  int N, M;
  cin >> N >> M;
  ArbitraryModInt::set_mod(M);
  auto ret = montmort< ArbitraryModInt >(N);
  ret.erase(begin(ret));
  cout << ret << endl;
}
Back to top page