TOP > 数学
Mod-Int
説明
mod M での四則演算を行う構造体である。
計算量
- 加減乗算 $O(1)$
- 除算 $O(\log N)$ ($M$ は素数)
実装例
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< mod >;
任意Mod-Int
その型を使う前に ArbitraryModInt::set_mod($md$) をすること.
struct ArbitraryModInt {
int x;
ArbitraryModInt() : x(0) {}
ArbitraryModInt(int64_t y) : x(y >= 0 ? y % mod() : (mod() - (-y) % mod()) % mod()) {}
static int &mod() {
static int mod = 0;
return mod;
}
static int set_mod(int md) {
mod() = md;
}
ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
if((x += p.x) >= mod()) x -= mod();
return *this;
}
ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
if((x += mod() - p.x) >= mod()) x -= mod();
return *this;
}
ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
unsigned long long a = (unsigned long long) x * p.x;
unsigned xh = (unsigned) (a >> 32), xl = (unsigned) a, d, m;
asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod()));
x = m;
return *this;
}
ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
*this *= p.inverse();
return *this;
}
ArbitraryModInt operator-() const { return ArbitraryModInt(-x); }
ArbitraryModInt operator+(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) += p; }
ArbitraryModInt operator-(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) -= p; }
ArbitraryModInt operator*(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) *= p; }
ArbitraryModInt operator/(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) /= p; }
bool operator==(const ArbitraryModInt &p) const { return x == p.x; }
bool operator!=(const ArbitraryModInt &p) const { return x != p.x; }
ArbitraryModInt inverse() const {
int a = x, b = mod(), u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ArbitraryModInt(u);
}
ArbitraryModInt pow(int64_t n) const {
ArbitraryModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ArbitraryModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ArbitraryModInt &a) {
int64_t t;
is >> t;
a = ArbitraryModInt(t);
return (is);
}
};