This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/others/block-cut-tree.hpp"
#pragma once
#include "../connected-components/bi-connected-components.hpp"
#include "../graph-template.hpp"
/**
* @brief Block Cut Tree
* @see https://ei1333.hateblo.jp/entry/2020/03/25/010057
*/
template <typename T = int>
struct BlockCutTree : BiConnectedComponents<T> {
public:
using BiConnectedComponents<T>::BiConnectedComponents;
using BiConnectedComponents<T>::g;
using BiConnectedComponents<T>::articulation;
using BiConnectedComponents<T>::bc;
vector<int> rev;
vector<vector<int> > group;
Graph<T> tree;
explicit BlockCutTree(const Graph<T> &g) : Graph<T>(g) {}
int operator[](const int &k) const { return rev[k]; }
void build() override {
BiConnectedComponents<T>::build();
rev.assign(g.size(), -1);
int ptr = (int)bc.size();
for (auto &idx : articulation) {
rev[idx] = ptr++;
}
vector<int> last(ptr, -1);
tree = Graph<T>(ptr);
for (int i = 0; i < (int)bc.size(); i++) {
for (auto &e : bc[i]) {
for (auto &ver : {e.from, e.to}) {
if (rev[ver] >= (int)bc.size()) {
if (exchange(last[rev[ver]], i) != i) {
tree.add_edge(rev[ver], i, e.cost);
}
} else {
rev[ver] = i;
}
}
}
}
group.resize(ptr);
for (int i = 0; i < (int)g.size(); i++) {
group[rev[i]].emplace_back(i);
}
}
};
#line 2 "graph/others/block-cut-tree.hpp"
#line 2 "graph/graph-template.hpp"
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 2 "graph/others/low-link.hpp"
#line 4 "graph/others/low-link.hpp"
/**
* @brief Low Link(橋/関節点)
* @see http://kagamiz.hatenablog.com/entry/2013/10/05/005213
*
*/
template <typename T = int>
struct LowLink : Graph<T> {
public:
using Graph<T>::Graph;
vector<int> ord, low, articulation;
vector<Edge<T> > bridge;
using Graph<T>::g;
virtual void build() {
used.assign(g.size(), 0);
ord.assign(g.size(), 0);
low.assign(g.size(), 0);
int k = 0;
for (int i = 0; i < (int)g.size(); i++) {
if (!used[i]) k = dfs(i, k, -1);
}
}
explicit LowLink(const Graph<T> &g) : Graph<T>(g) {}
private:
vector<int> used;
int dfs(int idx, int k, int par) {
used[idx] = true;
ord[idx] = k++;
low[idx] = ord[idx];
bool is_articulation = false, beet = false;
int cnt = 0;
for (auto &to : g[idx]) {
if (to == par && !exchange(beet, true)) {
continue;
}
if (!used[to]) {
++cnt;
k = dfs(to, k, idx);
low[idx] = min(low[idx], low[to]);
is_articulation |= par >= 0 && low[to] >= ord[idx];
if (ord[idx] < low[to]) bridge.emplace_back(to);
} else {
low[idx] = min(low[idx], ord[to]);
}
}
is_articulation |= par == -1 && cnt > 1;
if (is_articulation) articulation.push_back(idx);
return k;
}
};
#line 3 "graph/connected-components/bi-connected-components.hpp"
template <typename T = int>
struct BiConnectedComponents : LowLink<T> {
public:
using LowLink<T>::LowLink;
using LowLink<T>::g;
using LowLink<T>::ord;
using LowLink<T>::low;
vector<vector<Edge<T> > > bc;
void build() override {
LowLink<T>::build();
used.assign(g.size(), 0);
for (int i = 0; i < (int)used.size(); i++) {
if (!used[i]) dfs(i, -1);
}
}
explicit BiConnectedComponents(const Graph<T> &g) : Graph<T>(g) {}
private:
vector<int> used;
vector<Edge<T> > tmp;
void dfs(int idx, int par) {
used[idx] = true;
bool beet = false;
for (auto &to : g[idx]) {
if (to == par && !exchange(beet, true)) continue;
if (!used[to] || ord[to] < ord[idx]) {
tmp.emplace_back(to);
}
if (!used[to]) {
dfs(to, idx);
if (low[to] >= ord[idx]) {
bc.emplace_back();
for (;;) {
auto e = tmp.back();
bc.back().emplace_back(e);
tmp.pop_back();
if (e.idx == to.idx) break;
}
}
}
}
}
};
#line 5 "graph/others/block-cut-tree.hpp"
/**
* @brief Block Cut Tree
* @see https://ei1333.hateblo.jp/entry/2020/03/25/010057
*/
template <typename T = int>
struct BlockCutTree : BiConnectedComponents<T> {
public:
using BiConnectedComponents<T>::BiConnectedComponents;
using BiConnectedComponents<T>::g;
using BiConnectedComponents<T>::articulation;
using BiConnectedComponents<T>::bc;
vector<int> rev;
vector<vector<int> > group;
Graph<T> tree;
explicit BlockCutTree(const Graph<T> &g) : Graph<T>(g) {}
int operator[](const int &k) const { return rev[k]; }
void build() override {
BiConnectedComponents<T>::build();
rev.assign(g.size(), -1);
int ptr = (int)bc.size();
for (auto &idx : articulation) {
rev[idx] = ptr++;
}
vector<int> last(ptr, -1);
tree = Graph<T>(ptr);
for (int i = 0; i < (int)bc.size(); i++) {
for (auto &e : bc[i]) {
for (auto &ver : {e.from, e.to}) {
if (rev[ver] >= (int)bc.size()) {
if (exchange(last[rev[ver]], i) != i) {
tree.add_edge(rev[ver], i, e.cost);
}
} else {
rev[ver] = i;
}
}
}
}
group.resize(ptr);
for (int i = 0; i < (int)g.size(); i++) {
group[rev[i]].emplace_back(i);
}
}
};