TOP > 数学
形式的冪級数(Formal-Power-Series)
説明
えーこれはなんでしょうかねー
形式的べき級数(Formal power series)を扱う。
$P(x) = \sum_{i=0}^{\infty} c_{i} x^{i}$
実用的には多項式 $P(x), Q(x)$ の最初のいくつかの項を与えたときに以下の演算を行う。基本的には演算を畳み込みに落とし込んで FFT を用いて高速化できる。
- $O(n)$ : $P(x)+Q(x), P(x)-Q(x), -P(x), P’(x), \int P(x) dx, kP(x)$
- $O(n \log n)$ : $P(x)Q(x)$
- $O(n \log n)$ : $\frac {1} {P(x)}$
- $O(n \log n)$ : $\sqrt {P(x)}$
- $O(n \log n)$ : $\exp(P(x))$
- $O(n \log n)$ : $log(P(x)) = \int \frac {P’(x)} {P(x)}$
- $O(n \log n)$ : $P(x)^{k} = \exp(k \log P(x))$
計算量
上に示した
実装例
依存ライブラリ Mod-Int
テンプレート引数としてMod-Intが渡されることを想定している。
TODO 使い方
template< typename T >
struct FormalPowerSeries : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeries;
using MULT = function< P(P, P) >;
static MULT &get_mult() {
static MULT mult = nullptr;
return mult;
}
static void set_fft(MULT f) {
get_mult() = f;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] += r[i];
return *this;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
shrink();
return *this;
}
P &operator*=(const T &v) {
const int n = (int) this->size();
for(int k = 0; k < n; k++) (*this)[k] *= v;
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
return *this = get_mult()(*this, r);
}
P &operator%=(const P &r) {
return *this -= *this / r * r;
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P pre(int sz) const {
return P(begin(*this), begin(*this) + min((int) this->size(), sz));
}
P operator>>(int sz) const {
if(this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
P diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == 1);
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
P sqrt(int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret({T(1)});
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
// F(0) must be 0
P exp(int deg = -1) const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
P pow(int64_t k, int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P C(*this * rev);
P D(n - i);
for(int j = i; j < n; j++) D[j - i] = C[j];
D = (D.log() * k).exp() * (*this)[i].pow(k);
P E(deg);
if(i * k > deg) return E;
auto S = i * k;
for(int j = 0; j + S < deg && j < D.size(); j++) E[j + S] = D[j];
return E;
}
}
return *this;
}
T eval(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
};
検証
yukicoder No.3046 yukicoderの過去問 inverse()
int main() {
int K, N;
cin >> K >> N;
PolynominalMod< modint > X(K + 1);
X[0] = 1;
for(int i = 0; i < N; i++) {
int x;
cin >> x;
if(x <= K) X[x] = -1;
}
cout << X.inverse()[K] << endl;
}
Codeforces Round #250 (Div. 1) E - The Child and Binary Tree inverse(), sqrt()
int main() {
int N, M;
cin >> N >> M;
PolynominalMod< modint > C(M + 1);
C[0] = 1;
for(int i = 0; i < N; i++) {
int k;
cin >> k;
if(k <= M) C[k] = mod - 4;
}
C = C.sqrt();
C[0] += 1;
C = C.inverse();
for(int i = 1; i <= M; i++) {
cout << C[i] * 2 << "\n";
}
}